DOI QR코드

DOI QR Code

An Experimental Study on the Required Performances of Roof Concrete Placed in the In-ground LNG Storage Tank

지하식 LNG 저장탱크의 지붕 콘크리트의 요구성능에 관한 실험적 연구

  • Kwon, Yeong-Ho (Dept. of Architecture and Fire Service Administration, Dong Yang University)
  • 권영호 (동양대학교 건축소방행정학과)
  • Received : 2013.01.22
  • Accepted : 2013.02.27
  • Published : 2013.06.30

Abstract

This study is to derive from the required performances and the optimum mix proportion of the roof concrete placed in the in-ground LNG storage tank with a capacity of 200000 $m^3$, and propose the actual data for site concrete work. The concrete placing work without sliding and segregation in the fresh concrete condition is very important because the slope of domed roof is varied in the large range by its curvature. Also the control of hydration heat and the strength development at test ages are classified with massive section about 1.4 m thick and considered to the pre-stressing work and removal of air support after concrete placing work. Considering above condition, slump range is selected $100{\pm}25$ mm under the slope $20^{\circ}$ and $150{\pm}25$ mm over the slope $20^{\circ}$ s until 60 minutes of elapsed time. Also, the roof concrete is satisfied with compressive strength range including design strength at 91 days (30 MPa), pre-stressing work at 7 days (10 MPa), air support removal work at 21 days (14 MPa). Replacement ratio of limestone powder is determined by confined water ratio test and main design factors include water-cement ratio (W/C), sand-aggregate ratio and dosage of admixture. As test results, the optimum mix proportion of the roof concrete used low heat cement is as followings. 1) Replacement ratio of limestone powder 25% by confined water ratio test 2) Water-cement ratio 57.8% 3) Sand-aggregate ratio 42.0%. Also, test results for the adiabatic temperature rising test is satisfied with its criteria and shown the lower value compared to preceding storage tank (TK-13, 14). These required performances and the optimum mix proportion is to apply the actual construction work.

이 연구는 200000 $m^3$의 용량을 갖는 지하식 LNG 저장탱크의 지붕 콘크리트에 대한 요구성능 및 이에 따른 콘크리트의 최적배합비를 도출하고, 현장시공의 자료로 제안하기 위한 것이다. 지붕 콘크리트는 돔형 지붕의 경사기울기에 따라 굳지 않은 콘크리트의 시공성 및 충전성이 요구된다. 또한, 1.4~0.6 m의 지붕두께를 고려한 수화열 저감과 콘크리트 타설 후의 프리스트레싱 작업 및 air support의 제거공정에 따른 단계별 압축강도의 확보가 중요한 요구성능이다. 이러한 조건을 고려하여 지붕의 기울기가 $20^{\circ}$ 미만일 경우에는 슬럼프 $100{\pm}25$ mm, $20^{\circ}$ 이상일 경우에는 $150{\pm}25$ mm로 선정하였으며, 경시변화 60분을 만족해야 한다. 특히, 91일 재령의 설계기준강도 30 MPa, 프리스트레싱 작업시 7일 재령의 압축강도 10 MPa, air support 제거공정에서 21일 재령의 압축강도 14 MPa을 만족해야 한다. 석회석 미분말의 최적 치환율은 구속시험 결과에 따라 정하였으며, 주요 배합변수는 물-시멘트비, 잔골재율 및 고성능 AE감수제의 첨가율 등이다. 배합시험 결과, 저열 포틀랜드 시멘트 및 석회석 미분말을 사용한 지붕 콘크리트의 최적배합 조건은 석회석 미분말의 최적 치환율 25%(내할), 물-시멘트비 57.8%, 잔골재율 42.0%로 나타났으며, 공기량 및 슬럼프의 시험결과도 경시변화 60분까지 성능을 만족하였다. 또한, 단열온도 상승시험의 결과, 단열온도 상승양($Q{\infty}$)이 $26.3^{\circ}C$, 상승속도(${\gamma}$) 0.58로 선행탱크(TK-13,14)와 비교해 볼 때 매우 낮게 나타나 수화열 저감의 효과를 기대할 수 있다. 이러한 요구성능 및 최적배합 조건을 만족하는 설계기준강도 30 MPa(배합강도 36 MPa)의 지하식 LNG 저장탱크의 지붕 콘크리트용으로 제안하였다.

Keywords

References

  1. Korea Gas Corporation, "Code of the Full Containment LNG Storage Tank," Report of Korea Gas Corporation, 2002, 126 pp.
  2. Kim, T. H. and Ha, J. D., "Thermal Crack Control of LNG Tank Roof," Proceedings of the Korea Concrete Institute, Vol. 14, No. 2, 2002, pp. 421-424.
  3. Choi, C. K., Lee, T. Y., and Lee, E. J., "Improved Finite Element Models for the In-ground LNG Storage Tank," Journal of the Korea Society of Civil Engineers, Vol. 22, No. 5-A, 2002, pp. 1175-1182.
  4. Takagi, J., Nakashita, K., Nagura, K., and Nakamura, R., "The Rational Construction of In-ground LNG Tank Having of the Largest Capacity in the World-41LNG," Journal of the Cement Concrete, No. 572, 1994, pp. 8-13.
  5. Yang, I. H., Lee, J. Y., and Kim, Y. S., "Construction of Above-Ground Tanks for LNG Tank," Magazine of the Korea Concrete Institute, Vol. 15, No. 3, 2003, pp. 24-30.
  6. Kim, J. H., Yoon, I. S., and Yang, Y. M., "The Analysis of In-ground LNG Storage Tank Compression Ring Behavior during Concrete Pouring," Journal of the Korean Institute of Gas, Vol. 9, No. 2, 2005, pp. 16-21.
  7. Lee, K. W., Kim, Y. K., and Hong, S. H., "The Study of Roof Design for LNG Storage Tank," Proceedings of the Korean Society of Mechanical Engineers, Vol. 2, No. 1, 2001, pp. 448-452.
  8. Kwon, Y. H., "Study on the Optimum Mix Design of the Mass Concrete Designed as Massive and Deep Structure," Journal of the Korea Concrete Institute, Vol. 17, No. 2, 2005, pp. 293-302. https://doi.org/10.4334/JKCI.2005.17.2.293
  9. Ha, J. D. and Park, C. K., "The Requirement Properties of Concrete for LNG Tank," Magazine of the Korea Concrete Institute, Vol. 15, No. 3, 2003, pp. 56-61.
  10. Wataki, H., "Design and Construction on the Roof Concrete of In-ground LNG Storage Tank," NKK Technical Report, No. 132, 1990, pp. 70-77.
  11. Takagi, J., "Construction and Development of In-ground LNG Storage Tank Having of Large Capacity," Journal of the Cement Concrete, No. 587, 1996, pp. 14-20.
  12. Korea Gas Corporation, "The Study on Thermal Cracking of Concrete Roof in Inchon LNG Terminal (TK-13, 14)," Taisei Corporation Document No. A-C-CR-0004, 2002, pp. 1-15.

Cited by

  1. The Effect of Specimen Size on the Results of Concrete Adiabatic Temperature Rise Test with Commercially Available Equipment vol.7, pp.12, 2014, https://doi.org/10.3390/ma7127861