DOI QR코드

DOI QR Code

Antioxidant Activities of Processed Deoduck (Codonopsis lanceolata) Extracts

가공공정에 따른 더덕 추출물의 항산화 활성

  • Jeon, Sang-Min (Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration) ;
  • Kim, So-Young (Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration) ;
  • Kim, In-Hye (Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration) ;
  • Go, Jeong-Sook (Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration) ;
  • Kim, Haeng-Ran (Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration) ;
  • Jeong, Jae-Youn (New Tree Co., Ltd.) ;
  • Lee, Hyeon-Yong (Dept. of Teaics, Seowon University) ;
  • Park, Dong-Sik (Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration)
  • 전상민 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김소영 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김인혜 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 고정숙 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김행란 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 정재윤 ((주)뉴트리) ;
  • 이현용 (서원대학교 차학과) ;
  • 박동식 (농촌진흥청 국립농업과학원 기능성식품과)
  • Received : 2013.02.05
  • Accepted : 2013.02.27
  • Published : 2013.06.30

Abstract

This study investigated the antioxidant activities of processed Deoduck (Codonopsis lanceolata) extracts treated through high-pressure extraction and steaming with fermentation. The antioxidant activities were determined for DPPH and ABTS radical-scavenging activity, SOD-like activity, ferric reducing antioxidant power (FRAP), and $Fe^{2+}$ chelating. Total phenolic and flavonoid contents were also measured. Among eight Deoduck extracts, the S5FDW extract had the highest total phenolic and flavonoid content, 73.9 mg GAE/g and 50.9 mg QUE/g, respectively. The S5FDW extract had the highest DPPH radical-scavenging activity (27%) at a 1.0 mg/mL concentration. The ABTS radical-scavenging activity was highest for S5FDW extract (82.1%) at a 10 mg/mL concentration. The HFDE extract showed the highest SOD-like activity (29.7%) at a 1.0 mg/mL concentration. FRAP was highest in S5FDW extract (140.8 ${\mu}M$) at a 1.0 mg/mL concentration. The DE extract showed the highest $Fe^{2+}$ chelating (46%) at a 1.0 mg/mL concentration. The phenolic and flavonoid contents significantly correlated with the antioxidant activity of several processed Deoduck extracts and was higher in the processed Deoduck extracts compared to the raw Deoduck extracts. Therefore, processing techniques can be useful methods for making Deoduck a more potent and natural antioxidant.

본 연구에서는 다양한 가공공정 처리를 한 더덕 추출물의 총 폴리페놀 및 플라보노이드 함량과 항산화활성 변화를 비교하였다. 총 폴리페놀 및 플라보노이드 함량은 S5FDW에서 73.9 mg GAE/g과 50.9 mg QUE/g으로 가장 높게 나타났으며, DE에서는 15.7 mg GAE/g과 14.7 mg QUE/g으로 가장 낮았다. DPPH와 ABTS radical 소거능은 농도 의존적인 경향을 나타냈으며, 1.0 mg/mL 농도에서 $27.0{\pm}2.5%$, $17.4{\pm}0.6%$로 S5FEW에서 가장 높은 소거능을 보였다. SOD 유사활성은 1.0 mg/mL 농도에서 HFDE가 $29.7{\pm}3.2%$로 높은 유사활성을 보였으며, DE가 $19.9{\pm}1.6%$로 낮은 활성을 나타내었다. FRAP에 의한 환원력은 S5FDW가 1.0 mg/mL 농도에서 $140.8{\pm}4.5$ ${\mu}M$ Fe(II)/g으로 높은 환원력을 나타내었다. $Fe^{2+}$ chelating 활성은 1.0 mg/mL 농도에서 $46.0{\pm}1.6%$로 DE가 높은 활성을 보였고, HFDE가 $15.8{\pm}1.0%$로 낮은 활성을 나타내었다. 가공공정을 이용한 더덕 추출물의 폴리페놀 및 플라보노이드 함량과 항산화 활성 간의 상관관계는 총 폴리페놀 함량과 총 플라보노이드, DPPH 및 ABTS radical 소거능 그리고 FRAP에 의한 환원력은 r=0.958(p<0.001), r=0.849(p<0.01), r=0.932(p<0.01) 및 r=0.985(p<0.001)로 높은 양의 상관관계를 나타내었다. 총 플라보노이드 함량과 DPPH 및 ABTS radical 소거능과 FRAP에 의한 환원력은 r=0.818(p<0.05), r=0.834(p<0.05) 및 r=0.944(p<0.001)로 유의적인 상관관계를 나타내어 폴리페놀 및 플라보노이드 함량이 항산화에 중요한 영향을 미치는 것으로 사료된다. 이상의 결과, 더덕의 가공공정은 더덕의 물리적 조직 변화와 더덕 성분의 화학적 변화를 일으켜 페놀성 물질을 증가시키므로 항산화 성분 함량과 항산화 활성 증가를 가져오는 것으로 사료된다. 따라서 이러한 가공공정을 거친 더덕을 활용하여 항산화 활성이 증가된 천연 항산화제 개발이 가능할 것이며, 향후 가공과정 중 증가 또는 생성되는 활성물질에 대한 구조와 작용메커니즘 등에 대한 추가적인 연구가 필요하다고 생각한다.

Keywords

References

  1. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP. 1999. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 26: 202-226. https://doi.org/10.1016/S0891-5849(98)00196-8
  2. Kim YC, Hong HD, Rho JH, Cho CW, Rhee YK, Yim JH. 2007. Changes of phenolic acid contents and radical scavenging activities of ginseng according to steaming times. J Ginseng Res 31: 230-236. https://doi.org/10.5142/JGR.2007.31.4.230
  3. Lodovici M, Guglielmi F, Meoni M, Dolara P. 2001. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol 39: 1205-1210. https://doi.org/10.1016/S0278-6915(01)00067-9
  4. Kim SH, Choi HJ, Oh HT, Chung MJ, Cui CB, Ham SS. 2008. Cytoprotective effect by antioxidant activity of Codonopsis lanceolata and Platycodon grandiflorum ethyl acetate fraction in human HepG2 cells. Korean J Food Sci Techenol 40: 696-701.
  5. Park SJ, Park DS, Lee SB, He X, Ahn JH, Yoon WB, Lee HY. 2010. Enhancement of antioxidant activities of Codonopsis lanceolata and fermented Codonopsis lanceolata by ultra high pressure extraction. J Korean Soc Food Sci Nutr 39: 1898-1902. https://doi.org/10.3746/jkfn.2010.39.12.1898
  6. Hwang CR, Oh SH, Kim HY, Lee SH, Hwang IG, Shin YS, Lee JS, Jeong HS. 2011. Chemical composition and antioxidant activity of Deoduk (Codonopsis lanceolata) and Doragi (Platycodon grandiflorum) according to temperature. J Korean Soc Food Sci Nutr 40: 798-803. https://doi.org/10.3746/jkfn.2011.40.6.798
  7. Hong WS, Lee JS, Ko SY, Choi YS. 2006. A study on the perception of Codonopsis lanceolata dishes and the development of Codonopsis lanceolata dishes. Korean J Food Cookery Sci 22: 181-192.
  8. Ichikawa M, Ohta S, Komoto N, Ushijima M, Kodera Y, Hayama M, Shirota O, Sekita S, Kuroyanagi M. 2009. Simultaneous determination of seven saponins in the roots of Codonopsis lanceolata by liquid chromatography-mass spectrometry. J Nat Med 63: 52-57. https://doi.org/10.1007/s11418-008-0294-4
  9. Lee KT, Choi J, Jung WT, Nam JH, Jung HJ, Park HJ. 2002. Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins. J Agric Food Chem 50: 4190-4193. https://doi.org/10.1021/jf011647l
  10. Bennett PB, Demchenko I, Marquis RE. 1998. High pressure biology and medicine. University of Rochester Press, New York, NY, USA. p 1-428.
  11. Shouqin Z, Junjie Z, Changzhen W. 2004. Novel high pressure extraction technology. Int J Pharm 278: 471-474. https://doi.org/10.1016/j.ijpharm.2004.02.029
  12. Deliza R, Rosenthal A, Abadio FBD, Silva CHO, Castillo C. 2005. Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. J Food Eng 67: 241-246. https://doi.org/10.1016/j.jfoodeng.2004.05.068
  13. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. 2000. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 63: 1702-1704. https://doi.org/10.1021/np990152b
  14. Kim GY, Yang YS, Youn JY, Lee CJ, Jeon JW, Jung OS, Choi YH. 2009. Theory and practice of fermented food. Kyomunsa, Seoul, Korea. p 12.
  15. Lee SB, Go GH, Yang JY, Oh SH, Kim JG. 2004. Fermented food. 2nd ed. Hyoil, Seoul, Korea. p 3.
  16. Song CH, Seo YC, Choi WY, Lee CG, Kim DU, Chung JY, Chung HC, Park DS, Ma CJ, Lee HY. 2012. Enhancement of antioxidative activity of Codonopsis lanceolata by stepwise steaming process. Korean J Medicinal Crop Sci 20:238-244. https://doi.org/10.7783/KJMCS.2012.20.4.238
  17. Jung LS, Yoon WB, Park SJ, Park DS, Ahn JH. 2012. Evaluation of physicochemical properties and biological activities of steamed and fermented Deodeok (Codonopsis lanceolata). Korean J Food Sci Techenol 44: 135-139. https://doi.org/10.9721/KJFST.2012.44.1.135
  18. Park SJ, Seong DH, Park DS, Kim SS, Gou J, Ahn JH, Yoon WB, Lee HY. 2009. Chemical compositions of fermented Codonopsis lanceolata. J Korean Soc Food Sci Nutr 38:396-400. https://doi.org/10.3746/jkfn.2009.38.3.396
  19. Park SJ, Park DS, Kim SS, He X, Ahn JH, Yoon WB, Lee HY. 2010. The effect of fermented Codonopsis lanceolata on the memory impairment of mice. J Korean Soc Food Sci Nutr 39: 1691-1694. https://doi.org/10.3746/jkfn.2010.39.11.1691
  20. Park SJ, Song SW, Seong DH, Park DS, Kim SS, Gou J, Ahn JH, Yoon WB, Lee HY. 2009. Biological activities in the extract of fermented Codonopsis lanceolata. J Korean Soc Food Sci Nutr 38: 983-988. https://doi.org/10.3746/jkfn.2009.38.8.983
  21. Kim SS, Jeong MH, Seo YC, Kim JS, Kim NS, Ahn JH, Hwang B, Park DS, Park SJ, Lee HY. 2010. Comparison of antioxidant activities by high pressure extraction of Codonopsis lanceolata from different production areas. Korean J Medicinal Crop Sci 18: 248-254.
  22. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  23. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  24. Singleton VL, Orthofer R, Lamuela-Raventόs RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  25. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  26. Arnao MB, Cano A, Acosta M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73: 239-244. https://doi.org/10.1016/S0308-8146(00)00324-1
  27. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  28. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  29. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  30. Decker EA, Welch B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38: 674-677. https://doi.org/10.1021/jf00093a019
  31. Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci 2: 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  32. Perron NR, Brumaghim JL. 2009. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53: 75-100. https://doi.org/10.1007/s12013-009-9043-x
  33. Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2: 875-877. https://doi.org/10.1038/nprot.2007.102
  34. He X, Kim SS, Park SJ, Seong DH, Yoon WB, Lee HY, Park DS, Ahn J. 2010. Combined effects of probiotic fermentation and high-pressure extraction on the antioxidant, antimicrobial, and antimutagenic activities of Deodeok (Codonopsis lanceolata). J Agric Food Chem 58: 1719-1725. https://doi.org/10.1021/jf903493b
  35. Choi WY, Lee CG, Seo YC, Song CH, Lim HW, Lee HY. 2012. Effect of high pressure and steaming extraction processes on ginsenosides Rg3 and Rh2 contents of culturedroot in wild ginseng (Panax ginseng C.A. Meyer). Korean J Medicinal Crop Sci 20: 270-276. https://doi.org/10.7783/KJMCS.2012.20.4.270
  36. Williams RJ, Spencer JP, Rice-Evans C. 2004. Flavonoids: antioxidants or signaling molecules? Free Radic Biol Med 36: 838-849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
  37. Jeong HY. 1991. Aging . free radical . arteriosclerosis. Life Science 1: 2-14.
  38. Ancerewicz J, Migliavacca E, Carrupt PA, Testa B, Brée F, Zini R, Tillement JP, Labidalle S, Guyot D, Chauvet- Monges AM, Crevat A, Le Ridant A. 1998. Structure-property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Radic Biol Med 25: 113-120. https://doi.org/10.1016/S0891-5849(98)00072-0
  39. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  40. Cho ML, Lee DJ, You SG. 2012. Radical scavenging activity of ethanol extracts and solvent partitioned fractions from various red seaweeds. Ocean and Polar Res 34: 445-451. https://doi.org/10.4217/OPR.2012.34.4.445
  41. Peleg H, Naim M, Rouseff RL, Zehavi U. 1991. Distribution of bound and free phenolic acids in oranges (Citrus sinensis) and grapefruits (Citrus paradisi). J Sci Food Agric 57: 417-426. https://doi.org/10.1002/jsfa.2740570312
  42. Kim YE, Yang JW, Lee CH, Kwon EK. 2009. ABTS radical scavenging and anti-tumor effect of Tricholoma matsutake Sing. (pine mushroom). J Korean Soc Food Sci Nutr 38:555-560. https://doi.org/10.3746/jkfn.2009.38.5.555
  43. Kitani K, Minami C, Yamamoto T, Kanai S, Ivy GO, Carrillo MC. 2002. Pharmacological interventions in aging and ageassociated disorders: potentials of propargylamines for human use. Ann N Y Acad Sci 959: 295-307. https://doi.org/10.1111/j.1749-6632.2002.tb02101.x
  44. Klug D, Rabani J, Fridovich I. 1972. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem 247: 4839-4842.
  45. Kim MS, Kim KH, Yook HS. 2012. Antioxidative effects of Campanula takesimana Nakai extract. J Korean Soc Food Sci Nutr 41: 1331-1337. https://doi.org/10.3746/jkfn.2012.41.10.1331
  46. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY, Chung IM. 2004. Comparision of SOD activity and phenolic compound contents in various Korean medicinal plants. Korean J Medicinal Crop Sci 12: 191-202.
  47. Kim KH, Kim NY, Kim SH, Han IA, Yook HS. 2012. Study on antioxidant effects of fractional extracts from Ligularia stenocephala leaves. J Korean Soc Food Sci Nutr 41: 1220-1225. https://doi.org/10.3746/jkfn.2012.41.9.1220
  48. Jang MR, Hong EY, Cheong JH, Kim GH. 2012. Antioxidative components and activity of domestic Cirsium japonicum extract. J Korean Soc Food Sci Nutr 41: 739-744. https://doi.org/10.3746/jkfn.2012.41.6.739
  49. Li HB, Wong CC, Cheng KW, Chen F. 2008. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci Technol 41:385-390. https://doi.org/10.1016/j.lwt.2007.03.011
  50. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239.
  51. Xu XM, Jun JY, Jeong IH. 2007. A study on the antioxidant activity of Hae-Songi mushroom (Hypsizigus marmoreus) hot water extracts. J Korean Soc Food Sci Nutr 36: 1351-1357. https://doi.org/10.3746/jkfn.2007.36.11.1351
  52. Kwon TH, Kim JK, Kim TW, Lee JW, Kim JT, Seo HJ, Kim MJ, Kim CG, Jeon DS, Park NH. 2011. Antioxidant and anti-lipase activity in Halocynthia roretzi extracts. Korean J Food Sci Techol 43: 464-468. https://doi.org/10.9721/KJFST.2011.43.4.464
  53. Graf E, Eaton JW. 1990. Antioxidant functions of phytic acid. Free Radic Biol Med 8: 61-69. https://doi.org/10.1016/0891-5849(90)90146-A
  54. Jang GY, Kim HY, Lee SH, Kang Y, Hwang IG, Woo KS, Kang TS, Lee JS, Jeong HS. 2012. Effects of heat treatment and extraction method on antioxidant activity of several medicinal plants. J Korean Soc Food Sci Nutr 41: 914-920. https://doi.org/10.3746/jkfn.2012.41.7.914

Cited by

  1. Antioxidant Activity and Inhibitory Effect against Oxidative Neuronal Cell Death of Kimchi Containing a Mixture of Wild Vegetables with Nitrite Scavenging Activity vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1458
  2. 아마란스 종자 추출물의 라디칼 저해활성 vol.18, pp.2, 2014, https://doi.org/10.13050/foodengprog.2014.18.2.116
  3. Comparison of quality characteristics of Platycodon grandiflorum according to steaming and fermentation vol.22, pp.6, 2015, https://doi.org/10.11002/kjfp.2015.22.6.851
  4. Antioxidative and Antidiabetic Activities of Methanol Extracts from Different Parts of Jerusalem Artichoke (Helianthus tuberosus L.) vol.29, pp.1, 2016, https://doi.org/10.9799/ksfan.2016.29.1.128
  5. Antioxidative Activities and Quality Characteristics of Gruel as a Home Meal Replacement with Angelica keiskei Powder Pre-treated by Various Drying Methods vol.29, pp.1, 2014, https://doi.org/10.7318/KJFC/2014.29.1.091
  6. Effect of Drying and Extraction Methods on Antioxidant Activity of Gnaphalium affine D. DON vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.695
  7. Comparison of Physicochemical Properties and Antioxidant Activity between Raw and Heat-Treated Vegetables vol.25, pp.1, 2014, https://doi.org/10.7856/kjcls.2014.25.1.5
  8. Physicochemical and Sensory Characteristics of Hot Water Extracts of Codonopsis lanceolata Root Skin and Flesh with Different Heat Treatments vol.48, pp.2, 2016, https://doi.org/10.9721/KJFST.2016.48.2.104
  9. Antioxidant Activities of Amaranth (Amaranthus spp. L.) Flower Extracts vol.27, pp.2, 2014, https://doi.org/10.9799/ksfan.2014.27.2.175
  10. Effect of the Enhanced Biological Activities and Reduced Bitter Taste of Bitter Melon(Momordica charantia L.) by Roasting vol.49, pp.2, 2015, https://doi.org/10.14397/jals.2015.49.2.107
  11. Lactic fermentation enhances the antioxidant activity of gold kiwifruit vol.25, pp.2, 2018, https://doi.org/10.11002/kjfp.2018.25.2.255
  12. The Functional Effects on Anti-oxidant and Anti-inflammation of Veronica persica Poir. Extracts vol.26, pp.4, 2018, https://doi.org/10.11625/KJOA.2018.26.4.661
  13. 잔가시 모자반 추출물의 주름 개선 및 미백 효과 vol.44, pp.1, 2016, https://doi.org/10.4014/mbl.1510.10002
  14. 피복물 종류에 따른 더덕의 생육 및 항산화 물질 비교 vol.24, pp.3, 2016, https://doi.org/10.7783/kjmcs.2016.24.3.183
  15. 제주 동백나무 겨우살이의 용매별 기능성 성분 및 항산화 작용 vol.26, pp.9, 2013, https://doi.org/10.5352/jls.2016.26.9.1074
  16. 당 침지액 농도에 따른 건조 둥근 마의 품질 특성 및 항산화 효과 vol.30, pp.6, 2013, https://doi.org/10.9799/ksfan.2017.30.6.1176
  17. AF-343 함유 저염 건조 불고기 비빔밥의 관능적 항산화적 특성 vol.34, pp.1, 2019, https://doi.org/10.7318/kjfc/2019.34.1.53
  18. Deodorization Effects and Antibacterial Activity of Codonopsis lanceolata Extract vol.17, pp.2, 2013, https://doi.org/10.20402/ajbc.2019.0288
  19. 품종에 따른 건지황의 이화학적 특성 연구 vol.27, pp.5, 2013, https://doi.org/10.7783/kjmcs.2019.27.5.330
  20. 더덕 추출물과 용매 분획물의 항산화 및 티로시나아제 저해활성 vol.32, pp.6, 2013, https://doi.org/10.9799/ksfan.2019.32.6.611
  21. Antioxidant activities of flower, berry and leaf of Panax ginseng C. A. Meyer vol.52, pp.4, 2020, https://doi.org/10.9721/kjfst.2020.52.4.342
  22. Quality Characteristics and Antioxidant Activity of Malt Made with Two-Row Barley vol.50, pp.1, 2021, https://doi.org/10.3746/jkfn.2021.50.1.36
  23. 증숙 더덕 에탄올 추출물에 대한 항산화·항균 활성 vol.34, pp.1, 2013, https://doi.org/10.9799/ksfan.2021.34.1.107
  24. 더덕 에탄올 추출물의 도시미세먼지 노출로 인한 폐 세포 산화스트레스 발생과 세포밀착연접 손상 억제 효과 vol.53, pp.2, 2013, https://doi.org/10.9721/kjfst.2021.53.2.165
  25. 참당귀(Angelica gigas Nakai)잎 용매추출에 따른 생리활성 vol.34, pp.2, 2013, https://doi.org/10.9799/ksfan.2021.34.2.181
  26. Effects of supercritical carbon dioxide extracts of red pepper and pine needle on the oxidative stability of perilla oil vol.28, pp.6, 2013, https://doi.org/10.11002/kjfp.2021.28.6.747