DOI QR코드

DOI QR Code

Theoretical and Computational Analyses of Bernoulli Levitation Flows

베르누이 부상유동의 이론해석 및 수치해석 연구

  • Nam, Jong Soon (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Gyu Wan (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Jin Hyeon (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Heuy Dong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • Received : 2012.11.19
  • Accepted : 2013.04.10
  • Published : 2013.07.01

Abstract

Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-${\omega}$ turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, workpiece diameter,and clearance gap between the workpiece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.

공압 부상은 베르누이 원리에 기초한다. 그러나 공압 부상 방법은 제품의 원가 상승의 요인이 되는 대량의 유량을 소모하는 것으로 알려져 있다. 이 논문에서는 베르누이 부상 유동의 통찰력을 얻기 위해 수치 해석 연구를 수행하였다. 3차원 압축성 Navier-Stokes 방정식과 SST k-${\omega}$ 난류모델에 유한 체적법을 적용하여 계산하였다. 기체 유량, 공정 제품의 직경 그리고 원형실린더와 공정 제품사이의 간극을 다양하게 변화하여 공정 제품 주위의 유동 특성을 조사하였다. 그 결과 부상력을 위한 최적의 간극과 공급 기체 유량이 증가하면 큰 부상력이 발생한다는 것을 알았다.

Keywords

References

  1. Chang, H. S., Park, Y. J., Chang, Y. S. and Kong, J. Y., 2006, "CFD Analysis for Concept Design of Air Levitation Transport System," Jornal of the KSME, Vol. 40, No. 9, pp 512-516.
  2. Vincent, V., Pierre, L. and Alain, D., 2005, "Non-contact handling in microassembly: Acoustical levitation," Precision Engineering 29, pp 491-505. https://doi.org/10.1016/j.precisioneng.2005.03.003
  3. Li, X., Kenji, K. and Toshiharu, K., 2008, "Analysis of vortex levitation," Experimental Thermal and Fluid Science, Vol. 32, pp 1448-1454. https://doi.org/10.1016/j.expthermflusci.2008.03.010
  4. Toshiharu, K. and Li, X., August 17-21, 2009, "vortex levitation," 10th International Conference on Fluid Control, Measurements and Visualization (FLUCOME 2009), Moscow, Russia
  5. Waltham, C., Bendall, S. and Kotlicki, A., 2003, "Bernoulli Levitation," Amerrican Journal of Physics, Vol. 71, No. 2, pp. 176-179.
  6. Young, Munson, Okiishi, Huebsch, 2007, "A Brief Introduction to Fluid Mechanics," Wiley, 4th Edition, pp. 66-72.
  7. White F. M., 1999, "Fluid Mechanics," McGraw-Hill, 4th Edition, Section 6
  8. Toshiharu, K., 2008, "New Pneumatic Techniques and Applications," Proceedings of the 7th JFPS International Symposium on Fluid Power(TOYAMA 2008), ISBN 4-931070-07-X
  9. Moon, I. H. and Hwang, Y. K., 2004, "Evaluation of a Propulsion Force Coefficients for Transportation of Wafers in an Air Levitation System," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 16, No. 9, pp. 820-827.
  10. Ko, H. J., Kim, J. H. and Kim, J. H, 2009, "A Study of Non-Contact Transfer Handler Using Bernoulli Theory," Proceedings of Korean Society for Precision Engineering, pp. 621-622
  11. Moon, I. H. and Hwang, Y. K., 2006, "Evaluation of a Wafer Transportation Speed for Propulsion Nozzle Array on Air Levitation," Trans. Korean Soc. Mech. Eng. B, Vol. 30, No. 4, pp. 306-313 https://doi.org/10.3795/KSME-B.2006.30.4.306
  12. Brandt, E.H., 1989, "Levitation in Physics," Science, Vol. 243.
  13. Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605.

Cited by

  1. A study on the cross section in pipe type orifice of suitable piston rod moving in gas spring elevation working vol.16, pp.11, 2015, https://doi.org/10.5762/KAIS.2015.16.11.7745
  2. A optimized structural design of piston on moving in gas spring elevation working vol.16, pp.12, 2015, https://doi.org/10.5762/KAIS.2015.16.12.8274