DOI QR코드

DOI QR Code

Characterization and consolidation of thermoelectric CrSi2 compound prepared by mechanical alloying

MA법으로 제조된 CrSi2 열전화합물의 평가 및 치밀화

  • Lee, Chung-Hyo (Dept. of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Kim, Young (Dept. of Advanced Materials Science and Engineering, Mokpo National University)
  • 이충효 (목포대학교 신소재공학과) ;
  • 김영 (목포대학교 신소재공학과)
  • Received : 2013.04.29
  • Accepted : 2013.05.24
  • Published : 2013.06.30

Abstract

Mechanical alloying was carried out to produce $CrSi_2$ thermoelectric compound using a mixture of elemental $Cr_{33}Si_{67}$ powders. An optimal milling and heat treatment conditions to obtain the single phase of $CrSi_2$ compound with fine microstructure were investigated by X-ray diffraction and differential scanning calorimetry measurement. $CrSi_2$ intermetallic compound with a grain size of 70 nm could be obtained by MA of $Cr_{33}Si_{67}$ powders for 70 hours and subsequently annealed at $650^{\circ}C$. Consolidation of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies at $600{\sim}1000^{\circ}C$ under 60 MPa. The shrinkage of MA samples during SPS consolidation process increased gradually with increasing temperature up to $1000^{\circ}C$ and relatively significant at about $600^{\circ}C$. We tend to believe that these behaviors are deeply related to form a $CrSi_2$ compound during heating process, as can be realized from the DSC measurement. Electrical conductivity and Seebeck coefficient of sintered bodies were measured up to $900^{\circ}C$. Seebeck coefficient and power factor of $Cr_{33}Si_{67}$ compact prepared by MA and SPS at $1000^{\circ}C$ showed the maximum value of $125{\mu}V/K$ at $400^{\circ}C$ and $4.3{\times}10^{-4}W/mK^2$ at $350^{\circ}C$, respectively.

본 연구에서는 $CrSi_2$ 열전화합물을 제조하기 위하여 순금속 $Cr_{33}Si_{67}$ 혼합분말을 기계적 합금화 처리하였다. 초미세 $CrSi_2$계 열전화합물을 얻기 위하여 최적 볼밀조건 및 열처리 조건을 X선 회절분석과 시차주사 열량분석을 이용하여 조사하였다. 순금속 $Cr_{33}Si_{67}$ 혼합분말을 70시간까지 볼밀 처리 후 $650^{\circ}C$까지 열처리함으로써 평균 결정립 크기가 70 nm 인 초미세 $CrSi_2$ 열전화합물을 얻을 수 있었다. MA 분말시료의 벌크화를 위하여 소결온도 $600{\sim}1000^{\circ}C$, 압력 60 MPa에서 SPS 소결을 실시하였다. SPS 과정에서 MA 분말의 수축은 소결 개시 후 $600^{\circ}C$ 전후에서 크나 전반적으로 급격하게 발생하지 않으며 $1000^{\circ}C$까지 비교적 단조롭게 수축함을 알 수 있었다. 여기서 수축이 $600^{\circ}C$ 부근에서 큰 이유는 열분석 결과에서도 보여주듯이 $CrSi_2$ 화합물의 생성과 관련이 있는 것으로 판단된다. SPS 성형체의 전기전도도 및 제벡계수는 $900^{\circ}C$까지 측정을 실시하였으며, 그 결과로부터 제벡계수는 $400^{\circ}C$에서 $125{\mu}V/K$ 및 파워팩터는 $350^{\circ}C$에서 $4.3{\times}10^{-4}W/mK^2$의 최대값을 각각 나타내었다.

Keywords

References

  1. R. Yazdani-rad, S.A. Mirvakili and M. Zakeri, "Synthesis of $(Mo_{1−x}Cr_x)Si_2$ nanostructured powders via mechanical alloying and following heat treatment", J. Alloy and Compounds 489 (2010) 379. https://doi.org/10.1016/j.jallcom.2009.09.089
  2. D.M. Rowe and C.M. Bhandari, "Modern thermoelectrics', Rinehart and Winston, London (1988).
  3. H. Lange, "Electron properties of semiconducting silicides", Phys. Stat. Sol. 201 (1997) 3. https://doi.org/10.1002/1521-3951(199705)201:1<3::AID-PSSB3>3.0.CO;2-W
  4. Y. Isoda, Y. Imai and Y. Shinohara, "The effect of crystal grain size on thermoelectric properties of sintered $\beta$-$FeSi_2$", J. Jpn. Inst. Metals 67 (2003) 410. https://doi.org/10.2320/jinstmet1952.67.8_410
  5. M. Zakeri, R. Yazdani-Rad, M.H. Enayati, M.R. Rahimipour, "Synthesis of nanocrystalline $MoSi_2$ by mechanical alloying", J. Alloy and Compounds 403 (2005) 258. https://doi.org/10.1016/j.jallcom.2005.06.003
  6. L.F. Mattheiss, "Calculated structural properties of $CrSi_2$, $MoSi_2$, and $WSi_2$", Phys. Rev. B: Condens. Matter 45 (1992) 3252. https://doi.org/10.1103/PhysRevB.45.3252
  7. M. Umemoto, Z.G. Liu, R. Omatsuzawa and K. Tsuchiya, "Production and characterization of Mn-Si thermoelectric material", J. Metastable and Nanocrystalline Materials 8 (2000) 918. https://doi.org/10.4028/www.scientific.net/JMNM.8.918
  8. I.K. Kim, "Synthesis of thermoelectric $Mg_3Sb_2$ by melting and mechanical alloying", Journal of Korean Crystal Growth and Crystal Technology 22 (2012) 207. https://doi.org/10.6111/JKCGCT.2012.22.4.207
  9. C.H. Lee, "Fabrication and characterization of Mn-Si thermoelectric materials by mechanical alloying", Journal of Korean Crystal Growth and Crystal Technology 21 (2011) 246. https://doi.org/10.6111/JKCGCT.2011.21.6.246
  10. U. Mizutani and C.H. Lee, "Effect of mechanical alloying beyond the completion of glass formation for Ni-Zr alloy powders", J. Mat. Sci. 25 (1990) 399. https://doi.org/10.1007/BF00714046
  11. H.J. Fecht, E. Hellstern, Z. Fu and W.L. Johnson, "Nanocrystalline metals prepared by high-energy ball milling", Metal. Trans. 21 (1990) 2333. https://doi.org/10.1007/BF02646980
  12. J. Eckert and L. Schultz, "Glass formation and extended solubilities in mechanically alloyed cobalt-transition metal alloys", J. Less-Common Metals 166 (1990) 293. https://doi.org/10.1016/0022-5088(90)90011-8
  13. C.H. Lee, "Fabrication and structural observation of amorphous V-Co alloy by mechanical alloying", Journal of Korean Crystal Growth and Crystal Technology 22 (2012) 51. https://doi.org/10.6111/JKCGCT.2012.22.1.051
  14. C.H. Lee, M. Mori and U. Mizutani, "Differential scanning calorimetry study of various intermetallic compounds subjected to mechanical grinding", J. Non-Cryst. Solids 117-118 (1990) 733. https://doi.org/10.1016/0022-3093(90)90633-W
  15. C.H. Lee, M. Mori, T. Fukunaga and U. Mizutani, "Structural evidence for the amorphization of mechanically alloyed Cu-Ta powders studied by neutron diffraction and EXAFS", Mat. Sci. Forum 88-90 (1992) 399. https://doi.org/10.4028/www.scientific.net/MSF.88-90.399
  16. W.H. Hall, "Characterization of crystal size and strain by X-ray diffraction", J. Inst. Met. 75 (1948) 1127.
  17. T.B. Massalski, "Binary alloy phase diagrams", 2nd ed. (ASM, 1990).
  18. F.R. de Boer, R. Boom, W.C.M. Matten, A.R. Miedema and A.K. Niessen, "Cohesion in metals" (North-Holland, Amsterdam, 1988).