DOI QR코드

DOI QR Code

A Comparative Evaluation of Organ Doses in Infants and toddlers between Axial and Spiral CT Scanning

축방향 CT 스캔과 나선형 CT 스캔에서 영·유아의 장기흡수선량 비교 평가

  • Kim, Sangtae (Department of Radiological Science, Hanlyo University) ;
  • Eun, Sungjong (Department of Radiological Science, Hanlyo University) ;
  • Kim, Sunggil (Department of Radiological Science, Hanlyo University)
  • Received : 2012.11.22
  • Accepted : 2013.04.19
  • Published : 2013.04.30

Abstract

This study presents comparison results between axial and spiral scanning in the head and chest region with 64 MDCT to evaluate organ doses in infants and toddlers, who are more radiosensitive to radiation than adults and rise in the number of CT examinations, during CT scanning. Organ doses were significantly lower in spiral scanning than axial scanning regardless of scanned regions. The average organ dose for the chest scan using pitch of 1.355 was found to be significantly higher(average -12.03%) than for the other two pitch settings(0.525 and 0.988) in the spiral scanning mode compared with the axial one. Organ doses in the spiral scanning mode were lower by average 20.54% than the axial scanning mode. The results of the study that evaluated organ doses with an anthropomorphic phantom will help to demonstrate the result values of Monte Carlo simulations and make a contribution to more accurate evaluations of organ doses in toddlers undergoing a CT examination.

성인에 비해 방사선에 민감하고 검사건수가 증가하고 있는 영 유아의 CT 스캔 시의 장기흡수선량을 평가하기 위해 스캔부위를 머리부위와 가슴부위로 구분하고 64 MDCT를 이용하여 축방향 스캔과 나선형 스캔으로 비교했다. 스캔부위에 상관없이 나선형 스캔 시의 선량이 축방향 스캔 시 보다 유의하게 낮은 것으로 나타났다. 축방향 스캔과 비교해서 나선형 스캔 중 피치 1.355를 사용했을 때가 나머지 두 피치(0.525, 0.988)를 사용했을 때보다 가슴부위 스캔의 평균 장기흡수선량이 유의하게 높게(평균 -12.03%) 나왔다. 나선형 스캔 시 장기흡수선량이 축방향 스캔보다 평균 20.54% 낮게 나왔다. 결과적으로 인체모형을 통한 장기흡수선량을 평가한 본 연구는 몬테카를로 시뮬레이션 결과값을 실증하고, CT 검사를 받는 영 유아의 장기흡수선량의 보다 정확한 평가에 기여할 것이다.

Keywords

References

  1. D. J. Brenner, Hall EJ, "Computed tomography: an increasing source of radiation exposure", N Engl J Med, Vol. 357, pp.2277-2284, 2007. https://doi.org/10.1056/NEJMra072149
  2. A. S. Brody, D. P Frush, W. Huda, and R. L Brent, "American Academy of Pediatrics Section on Radiology. Radiation risk to children from computed tomography", Pediatrics, Vol. 120, pp.677-682, 2007 https://doi.org/10.1542/peds.2007-1910
  3. National Council on Radiation Protection and Measurements, Ionizing radiation exposure of the population of the United States, Bethesda (MD), National Council on Radiation Protection & Measurements, 2009.
  4. F. A. Mettler Jr, P. W. Wiest, J. A Locken, and C. A. Kelsey, "CT scanning:patterns of use and dose", J Radiol Prot, Vol. 20, pp.353-359, 2000. https://doi.org/10.1088/0952-4746/20/4/301
  5. A. L. Dorfman, R. Fazel, A. J. Einstein, K. E. Applegate, H. M. Krumholz, Y. Wang, E. Christodoulou, J. Chen, R. Sanchez, and B. K. Nallamothu, "Use of medical imaging procedures with ionizing radiation in children: a population-based study", Arch Pediatr Adolesc Med, Vol. 165, pp.458-464, 2011. https://doi.org/10.1001/archpediatrics.2010.270
  6. D. B. Larson, L. W. Johnson, B. M. Schnell, M. J. Goske, S. R. Salisbury, and H. P. Forman, "Rising use of CT in child visits to the emergency department in the United States, 1995-2008", Radiol, Vol. 259, pp.793-801, 2011. https://doi.org/10.1148/radiol.11101939
  7. D. Brenner, C. Elliston, E. Hall, and W. Berdon, "Estimated risks of radiation-induced fatal cancer from pediatric CT", Am J Roentgenol, Vol. 176, pp.289-296, 2001. https://doi.org/10.2214/ajr.176.2.1760289
  8. C. Lee., J. L. Williams, and W. E. Bolch, "Whole-body voxel phantoms of paediatric patients? UF series B", Phys Med Biol, Vol. 51, pp.4649-4661, 2006. https://doi.org/10.1088/0031-9155/51/18/013
  9. C. Lee, J. L. Williams, and W. E. Bolch, "The UF series of tomographic computational phantoms of pediatric patients", Med Phys, Vol. 32, pp.3537-3548, 2005. https://doi.org/10.1118/1.2107067
  10. S. T. Kim, "Geant4-DICOM Interface-based Monte Carlo Simulation to Assess Dose Distributions inside the Human Body during X-Ray Irradiation", Int J Cont, Vol. 8, No.2, pp.52-59, 2012. https://doi.org/10.5392/IJoC.2012.8.2.052
  11. 김상태, 최지원, 조정근, "열형광선량계를 이용한 16-MDCT와 64-MDCT의 관상동맥 CT 혈관조영술 시 선량평가", 한국콘텐츠학회논문지, 제10권, 제6호, pp.336-343, 2010. https://doi.org/10.5392/JKCA.2010.10.6.336
  12. L. L. Chang., F. D. Chen, P. S. Chang, C. C. Liu, and H. L. Lien, "Assessment of dose and risk to the body following conventional and spiral computed tomography", Zhonghua Yi Xue Za Zhi (Taipei), Vol. 55, pp.283-289, 1995.
  13. A. G. Pitman, R. S. Budd, and A. F McKenzie, "Radiation dose in computed tomography of the pelvis: Comparison of helical and axial scanning", Australas Radiol, Vol. 41, pp.329-335, 1997. https://doi.org/10.1111/j.1440-1673.1997.tb00727.x
  14. J. J. DeMarco, C. H. Cagnon, D. D. Cody, D. M. Stevens, C. H. McCollough, J. O'Daniel, and M. F. McNitt-Gray, "A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): Cylindrical and anthropomorphic phantoms", Phys Med Biol, Vol.50, pp.3989-4004, 2005. https://doi.org/10.1088/0031-9155/50/17/005

Cited by

  1. Analysis of phantom centering positioning on image noise and radiation dose in axial scan type of brain CT vol.175, pp.7, 2020, https://doi.org/10.1080/10420150.2020.1756810