DOI QR코드

DOI QR Code

Electrical Resistance Measurement in Characterizing the Internal Damage of Carbon Nanotube/Polypropylene Nanocomposites

전기저항 측정법을 이용한 탄소나노튜브/폴리프로필렌 나노복합재료의 내부 손상 예측

  • 김학수 (현대자동차 그룹 고분자재료연구팀) ;
  • 권동준 (경상대학교 나노신소재융합공학과 대학원) ;
  • 왕작가 (경상대학교 나노신소재융합공학과 대학원) ;
  • 구가영 (경상대학교 나노신소재융합공학과 대학원) ;
  • 김대식 (현대자동차 그룹 고분자재료연구팀) ;
  • 이춘수 (현대자동차 그룹 고분자재료연구팀) ;
  • 박종만 (경상대학교 나노신소재융합공학과 대학원)
  • Received : 2013.05.10
  • Accepted : 2013.06.22
  • Published : 2013.06.30

Abstract

The electrical resistance measurement was investigated as a damage monitoring method. In this study, 0.5 wt% Carbon nanotube reinforced polypropylene (CNT/PP) composites were evaluated under compressive fatigue loading. The shape of specimens was $20^{\circ}$ curved round type. Compression strength and electrical resistance were measured at different sections of specimen during compression. The microcracks of CNT/PP composites were detected based on the changing ratio of electrical resistance. Micro-damage during compressive fatigue test could be detected by electrical resistance measurements. The reason is that the contact points of CNTs in composites decreased under fatigue loading. During compressive fatigue test, larger change of electrical resistance was detected at the microcrack sections. It was proved that microcracks could be detected by electrical resistance measurement under compression test, whereas the real delamination parts were consistent with the predicted results by electrical resistance measurement.

전기저항 측정법을 이용하여 전도성을 띄는 소재는 손상예측이 가능하다. 본 연구에서는 차량용 소재로 이용하는 폴리프로필렌(PP)를 이용할 때 재료 내부에 발생될 손상 평가법을 고안하였다. PP 내부에 전도성을 부여하기 위해 탄소나노튜브(CNT)를 0.5 wt% 삽입하여 CNT/PP 복합재료를 제조하였다. 손상 평가를 하기 위해 시편 내부에 구리선을 삽입하여 가로와 세로, 대각선 구간을 설정하여 측정하였다. 시편의 모형은 $20^{\circ}$ 휘어진 시편을 사용하였다. 동적 압축 실험에 따른 전기저항 측정을 통해 구간별로 전기저항 변화도를 분석하였다. 동적 압축 실험에 따른 구간별 전기저항 변화도의 신호는 재료 내부에 전가된 응력을 나타내는 신호이다. 전기저항 측정 구간에서 전기저항 변화도가 높은 경우는 미세 손상이 발생되었음을 의미한다. 전기저항 측정법을 이용한 동적 압축 실험에 따른 예상 손상부위와 실제 파괴 실험을 통해 본 평가 방법을 이용하여 재료 내부 미세 손상을 예측할 수 있는 방법임을 확인하였다.

Keywords

References

  1. Lubineau G., and Rahaman A., "A Review of Strategies for Improving the Degradation Properties of Laminated Continuous-Fiber/Epoxy Composites with Carbon-Based Nano Reinforcements," Carbon, Vol. 50, 2012, pp. 2377-2395. https://doi.org/10.1016/j.carbon.2012.01.059
  2. Yongxiang, Y., Rob, B., Brijan, I., Heerden, D.J.V., Pieter, K., and Hans, D.W., "Recycling of Composite Materials," Chemical Engineering And Processing: Process Intensification, Vol. 51, 2012, pp. 53-68. https://doi.org/10.1016/j.cep.2011.09.007
  3. Nicholas, L., "Regulatory and Technology Lead-Time: the Case of US Automobile Greenhouse Gas Emission Standards," Transport Policy, Vol. 21, 2012, pp. 179-190. https://doi.org/10.1016/j.tranpol.2012.03.007
  4. Mei, H., and Cheng, L., "Stress-Dependence and Time-Dependence of the Post-Fatigue Tensile Behavior of Carbon Fiber Reinforced SiC Matrix Composites," Composites Science and Technology, Vol. 71, 2011, pp. 1404-1409. https://doi.org/10.1016/j.compscitech.2011.05.013
  5. Tan, Y., Meng, L., and Zhang, D., "Strain Sensing Characteristic of Ultrasonic Excitation-Fiber Bragg Gratings Damage Detection Technique," Measurement, Vol. 46, 2013, pp. 294-304. https://doi.org/10.1016/j.measurement.2012.07.001
  6. Wang, Z.J., Kwon, D.J., Gu, G.Y., Lee, W.I., Park, J.K., and Park, J.M., "Plasma Treatment of Carbon Nanotubes and Interfacial Evaluation of CNT-Phenolic Composites by Acoustic Emission and Dual Matrix Techniques," Journal of the Korean Society for Composite Materials, Vol. 25, No. 3, 2012, pp. 76-81. https://doi.org/10.7234/kscm.2012.25.3.076
  7. Dong, L., Vijay, V., Shailesh, V., Jaycee, C., Nandika, D.S., Thomas, C.W., and Richard, O.C., "Electrical Resistivity as a Measure Of Change of State in Substrates: Design, Development and Validation of an Automated System," Measurement, Vol. 44, 2011, pp. 159-163. https://doi.org/10.1016/j.measurement.2010.09.040
  8. Amanda, S. L., Qi, A., Tsu, W.C., and Erik, T. T., "Mechanical and Electrical Response of Carbon Nanotube-Based Fabric Composites to Hopkinson Bar Loading," Composites Science and Technology, Vol. 71, No. 15, 2011, pp. 616-621. https://doi.org/10.1016/j.compscitech.2010.12.025
  9. Tomo, T., Yasuhide, S., Yu, K., and Fumio, N., "Modeling and Characterization of the Electrical Conductivity of Carbon Nanotube-based Polymer Composites," Polymer, Vol. 52, 2011, pp. 3852-3856. https://doi.org/10.1016/j.polymer.2011.06.046
  10. Baere, I.D., Paepegem, W.V., and Degrieck, J., "Electrical Resistance Measurement for in Situ Monitoring of Fatigue of Carbon Fabric Composites," International Journal of Fatigue, Vol. 32, 2010, pp. 197-207. https://doi.org/10.1016/j.ijfatigue.2009.02.044
  11. Shindo, Y., Kuronuma, Y., Takeda, T., Narita, F., and Fu, S.Y., "Electrical Resistance Change and Crack Behavior in Carbon Nanotube/Polymer composites Under Tensile Loading," Composites Part B, Vol. 43, 2012, pp. 39-43. https://doi.org/10.1016/j.compositesb.2011.04.028
  12. Wolfgang, B., and Josef, Z.K., "A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites," Composites Science and Technology, Vol. 69, No. 15, 2009, pp. 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018
  13. Jie, W., Zhenhai, X., and Fred, C., "Damage Detection of Carbon Fiber Reinforced Polymer Composites Via Electrical Resistance Measurement," Composites Part B, Vol. 42, 2011, pp. 77-86. https://doi.org/10.1016/j.compositesb.2010.08.005
  14. Kwon, D.J., Wang, Z.J., Gu, G.Y., and Park, J.M., "Surface Control and Durability Evaluation of CNT and ITO Coated PET Transparent Electrode With Different Dry Conditions," Journal of the Korean Society for Composite Materials, Vol. 24, No. 5, 2011, pp. 17-22. https://doi.org/10.7234/kscm.2011.24.5.017

Cited by

  1. Effects of Solvent-Based Dilution Condition on CNT Dispersion in CNT/Epoxy Composites vol.29, pp.4, 2016, https://doi.org/10.7234/composres.2016.29.4.125
  2. A Study of Damage Sensing and Repairing Effect of CNT Nanocomposites vol.27, pp.6, 2014, https://doi.org/10.7234/composres.2014.27.6.219