DOI QR코드

DOI QR Code

Influence of Ammonia and Na2EDTA on Properties of Chemical Bath Deposited ZnS Thin Films

화학적 용액성장법에 의한 ZnS 박막의 제조 시 ammonia 및 Na2EDTA의 영향

  • Kim, Gwan-Tae (School of Materials Science and Engineering, Dept. of Electronic Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Hae-Ki (School of Materials Science and Engineering, Dept. of Electronic Materials Science and Engineering, Kyungpook National University) ;
  • Park, Byung-Ok (School of Materials Science and Engineering, Dept. of Electronic Materials Science and Engineering, Kyungpook National University)
  • 김관태 (경북대학교 신소재공학부 전자재료공학과) ;
  • 이해기 (경북대학교 신소재공학부 전자재료공학과) ;
  • 박병옥 (경북대학교 신소재공학부 전자재료공학과)
  • Received : 2013.05.08
  • Accepted : 2013.05.31
  • Published : 2013.06.30

Abstract

ZnS thin films were prepared on glass substrate by using chemical bath deposition method. The influence of ammonia ($NH_4OH$) and $Na_2EDTA$ ($Na_2C_{10}H_{16}N_2O_8$) as complexing agents on structural and optical properties of ZnS thin films were investigated. Zinc acetate dihydrate ($Zn(CH_3COO)_2{\cdot}2H_2O$) and thiourea ($H_2NCSNH_2$) were used as a starting materials and distilled water was used as a solvent. All ZnS thin films, regardless of a kind of complexing agents, had the hexagonal structure (${\alpha}$-ZnS) and had a preferred <101> orientation. ZnS thin films, with 4 M ammonia and with 4 M ammonia and 0.1 M $Na_2EDTA$, had the highest <101> peak intensity. In addition, their average particle size are 280 nm and 220 nm, respectively. The average optical transmittances of all films were higher than 60% in the visible range. The optical direct band gap values of films were about 3.6~3.8 eV.

Keywords

References

  1. D. Hariskos, S. Spiering, M. Powalla, Thin Solid Films, 480 (2005) 99.
  2. D. A. Johnston, M. H. Carletto, K. T. R. Reddy, I. Forbes, R. W. Miles, Thin Solid Films, 403 (2002) 102.
  3. A. Goudarzi, G. M. Aval, R. Sahraei, H. Ahmadpoor, Thin Solid Films, 516(15) (2008) 4953. https://doi.org/10.1016/j.tsf.2007.09.051
  4. V. L. Gayou, B. Salazar-Hernandez, M. E. Constantino, E. Rosendo Andres, T. D Laz, R. Delgado Macuil, M. Rojas Lopez, Vacuum, 84 (2010) 1191. https://doi.org/10.1016/j.vacuum.2009.10.023
  5. B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, J. C. Bernede, Mater. Chem. Phys., 68 (2001) 175. https://doi.org/10.1016/S0254-0584(00)00351-5
  6. Z. Z. Zhang, D. Z. Shen, J. Y. Zhang, C. X. Shan, Y. M. Lu, Y. C. Liu, B. H. Li, D. X. Zhao, B. Yao, X. W. Fan, Thin Solid Films, 513(1-2) (2006) 114. https://doi.org/10.1016/j.tsf.2006.01.054
  7. J. W. Lee, S. W. Lee, S. Y. Cho, S. T. Kim, I. Y. Park, Y. D. Choi, Mater. Chem. Phys., 77(1) (2002) 254.
  8. J. W. Lee, S. C. Lim, M. S. Kwak, I. Y. Park, S. T. Kim, Y. D. Choi, J. of the Kor. Association of Crystal Growth, 10(3) (2000) 199.
  9. J. Cheng, D. B. Fan, H. Wang, B. W. Liu, Y. C. Zhang, H. Yan, Semicond. Sci. Technol., 18 (2003) 676. https://doi.org/10.1088/0268-1242/18/7/313
  10. J. Ihanus, M. Ritala, M. Leskela, T. Prohaska, R. Resch, G. Friedbacher, M. Grasserbauer, Appl. Surf. Sci., 120 (1997) 43. https://doi.org/10.1016/S0169-4332(97)00226-2
  11. C. Y. Yeh, Z. W. Lu, S. Froyen, A. Zunger, Phys. Rev. B, 46(16) (1992) 10086. https://doi.org/10.1103/PhysRevB.46.10086
  12. Z. Y. Zhong, E. S. Cho, S. J. Kwon, Mater. Chem. Phys., 135 (2012) 287. https://doi.org/10.1016/j.matchemphys.2012.03.090
  13. O. L. Arenas, M. T. S. Nair, P. K. Nair, Semicond. Sci. Tech., 12 (1997) 1323. https://doi.org/10.1088/0268-1242/12/10/022