Neuroprotective Effects of Herbal Ethanol Extract from Gynostemma pentaphyllum on Dopamine Neurons in Rotenone- and MPTP-induced Animal Model of Parkinson's Disease

Rotenone- 및 MPTP-유도 파킨슨병 동물 모델에서 돌외 에탄올 추출물의 Dopamine 신경세포 보호작용

  • Received : 2013.03.13
  • Accepted : 2013.04.08
  • Published : 2013.04.30

Abstract

The neuroprotective effects of herbal ethanol extract (GP-EX) from Gynostemma pentaphyllum on dopamine neurons in animal model of Parkinson's disease (PD) were investigated. Rats and mice were administered with rotenone (2.5 mg/kg) for 28 days and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) for 5 days for the PD models, respectively and the animals were simultaneously treated with GP-EX (30 mg/kg, daily). After preparing the PD models, the animals were also administered with L-DOPA (10 mg/kg) for 14 days with or without GP-EX treatment. Treatment with GP-EX (30 mg/kg) inhibited the rotenone- and MPTP-induced neurotoxic effects in dopamine neurons of rats or mice, which was determined by the numbers of tyrosine hydroxylase-immunohistochemical staining survival cells, as well as the levels of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid. GP-EX (30 mg/kg) also showed the protective effects on neurotoxicity which was induced by long-term administration of L-DOPA (10 mg/kg) in rotenone- and MPTP-induced animal model of PD. The used doses of GP-EX (30 mg/kg) did not produce any signs of toxicity, such as weight loss, diarrhea, or vomiting, in rats and mice during the treatment periods. These results suggest that GP-EX has the protective functions against chronic L-DOPA-induced neurotoxic reactions in dopamine neurons of rotenone- and MPTP-induced animal model of PD. Therefore, the natural GP-EX may be beneficial in the prevention of PD progress and L-DOPA-induced neurotoxicity in PD patients.

Keywords

References

  1. Kim, Y. J. : Etiology and pathogenesis of Parkinson's disease. J. Korean Neurol. Assoc. 22, 421 (2004).
  2. Migliore, L. and Copped, F. : Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat. Res. 31, 73 (2009).
  3. Olanow, C. W., Watts, R. L. and Koller, W. C. : An algorithm (decision tree) for the management of Parkinson's disease treatment guidelines. Neurology 56, 1 (2001). https://doi.org/10.1212/WNL.56.1.1
  4. Cheng, N., Maeda, T., Kume, T., Kaneko, S., Kochiyama, H., Akaike, A., Goshima, Y. and Misu : Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons. Brain Res. 16, 278 (1196).
  5. Yacoubian, T. A. and Standaert, D. C. : Targets for neuroprotection in Parkinson's disease. Biochim. Biophys. Acta 1792, 676 (2009). https://doi.org/10.1016/j.bbadis.2008.09.009
  6. Dhillon, A. S., Tarbutton, G. L., Levin, J. L., Plotkin, G. M., Lowry, L. K., Nalbone, J. T. and Shepherd, S. : Pesticide/ environmental exposures and Parkinson's disease in East Texas. J. Agromed. 13, 37 (2008). https://doi.org/10.1080/10599240801986215
  7. Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., Marras, C., Bhudhikanok, G. S., Kasten, M., Chade, A. R., Comyns, K., Richards, M. B., Meng C., Priestley, B., Fernandez, H. H., Cambi, F., Umbach, D. M., Blair, A., Sandler, D. P. and Langston, J. W. : Rotenone, paraquat, and Parkinson's disease. Environ. Health Perspect. 119, 866 (2011). https://doi.org/10.1289/ehp.1002839
  8. Betarbet, R., Canet-Aviles, R. M., Sherer, T. B., Mastroberardino, P. G., McLendon, C., Kim, J. H., Lund, S., Na, H. M., Taylor, G., Bence, N. F., Kopito, R., Seo, B. B., Yagi, T., Yagi, A., Klinefelter, G., Cookson, M. R. and Greenamyre, J. T. : Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alphasynuclein, and the ubiquitin-proteasome system. Neurobiol. Dis. 22, 404 (2006). https://doi.org/10.1016/j.nbd.2005.12.003
  9. Chou, A. P., Li, S., Fitzmaurice, A. G. and Bronstein, J. M. : Mechanisms of rotenone-induced proteasome inhibition. Neurotoxicology 31, 367 (2010). https://doi.org/10.1016/j.neuro.2010.04.006
  10. Langston, J. W., Irwin, I., Langston, E. B. and Forno, L. S. : The importance of the '4-5' double bond for neurotoxicity in primates of the pyridine derivative MPTP. Neurosci, Lett. 48, 87 (1984). https://doi.org/10.1016/0304-3940(84)90293-3
  11. Nicklas, W. J., Vyas, I. and Heikkila, R. E. : Inhibition of NADHlinked oxidation in brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl- 1,2,5,6-tetrahydropyridine. Life Sci. 36, 2503 (1985). https://doi.org/10.1016/0024-3205(85)90146-8
  12. Heikkila, R. E., Manzino, L., Cabbat, F. S. and Duvoisin, R. C. : Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine in mice. Science 224, 1451 (1984). https://doi.org/10.1126/science.6610213
  13. Yoshikawa, K., Arimitsu, M., Kuki, K., Takemoto, T. and Arihara, S. : Studies on the constituents of Cucurbitaceae plants. XVIII. On the saponin constituents of Gynostemma pentaphyllum MAKINO. (13). Yakugaku Zasshi 107, 361 (1987). https://doi.org/10.1248/yakushi1947.107.5_361
  14. Razmovski-Naumovski, V., Huang, T. H. W., Tran, V. H., Li, G. Q., Duke, C. C. and Roufogalis, B. D. : Chemistry and pharmacology of Gynostemma pentaphyllum. Phytochem. Rev. 14, 197 (2005).
  15. Choi, H. S., Lim, S. A., Park, M. S., Hwang, B. Y., Lee, C. K., Kim, S. H., Lin, S. C. and Lee, M. K. : Ameliorating effects of the ethanol extracts from Gynostemma pentaphyllum on electric footshock stress. Kor. J. Pharmacogn. 39, 341 (2008).
  16. Im, S. A., Choi, H. S., Hwang, B. Y., Lee, M. K. and Lee, C. K. : Augmentation of immune responses by oral administration of Gynostemma pentaphyllum ethanol extract. Kor. J. Pharmacogn. 40, 35 (2009).
  17. Choi, H. S., Shin, K. S., Choi, S. O., Kim, S. H., Lee, C. K. and Lee, M. K. : Ameliorating effects of herbal ethanol extract from Gynostemma pentaphyllum on chronic stress-induced anxiety in mice. Kor. J. Pharmacogn. 42, 32 (2011).
  18. Choi, H. S. Park, M. S., Kim, S. H., Hwang, B. Y., Lee, C. K. and Lee, M. K. : Neuroprotective effects of herbal ethanol extracts from Gynostemma pentaphyllum in the 6- hydroxydopamine-lesioned rat model of Parkinson's disease. Molecules. 15, 2814 (2010). https://doi.org/10.3390/molecules15042814
  19. Schmidt, W. J. and Alam, M. : Controversies on new animal models of Parkinson's disease pro and con: the rotenone model of Parkinson's disease. J. Neural Transm. Suppl. 70, 273 (2006).
  20. Liberatore, G. T., Jackson-Lewis, V., Vukosavic, S., Mandir, A. S., Vila, M., McAuliffe, W. G., Dawson, V. L, Dawson, T. M. and Przedborski, S. : Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5, 1403 (1999). https://doi.org/10.1038/70978
  21. Schober, A. : Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell. Tissue Res. 318, 215 (2004). https://doi.org/10.1007/s00441-004-0938-y
  22. Lee, C. S., Sauer, H. and Bjorklund, A. : Dopaminergic neuronal degeneration and motor impairments following axonterminal lesion by intrastriatal 6-hydroxydopamine in rats. Neuroscience. 72, 641 (1996). https://doi.org/10.1016/0306-4522(95)00571-4
  23. Lee, J. J., Kim, Y. M., Yin, S. Y., Park, H. D., Kang, M. H., Hong, J. T. and Lee, M. K. : Aggravation of L-DOPAinduced neurotoxicity by tetrahydropapaveroline in PC12 cells. Biochem. Pharmacol. 66, 1787 (1996).
  24. Borah, A. and Mohanakumar, K. P. : L-DOPA-induced 6- hydroxydopamine production in the striata of rodents is sensitive to the degree of denervation. Neurochem. Int. 56, 357 (2010). https://doi.org/10.1016/j.neuint.2009.11.008
  25. Borah, A. and Mohanakumar, K. P. : Long term L-DOPA treatment causes production of 6-OHDA in the mouse striatum: Involvement of hydroxyl radical. Ann. Neurosci. 16, 160 (2009). https://doi.org/10.5214/ans.0972.7531.2009.160406
  26. Nagatsu, T. : Isoquinoline neurotoxins in the brain and Parkinson's disease. Neurosci. Res. 29, 99 (1997). https://doi.org/10.1016/S0168-0102(97)00083-7
  27. Suh, K. H., Choi, H. S., Shin, K. S., Hwang, B. Y. and Lee, M. K. : Neuroprotective effects of herbal ethanol extracts from Gynostemma pentaphyllum on L-DOPA therapy in 6- hydroxydopamine-lesioned rat model of Parkinson's disease. Kor. J. Pharmacogn. 42, 341 (2011).
  28. Hatano, T., Kubo, S., Sato, S. and Hattori, N. : Pathogenesis of familial Parkinson's disease: new insights based on monogenic forms of Parkinson's disease. J. Neurochem. 111, 1075 (2009). https://doi.org/10.1111/j.1471-4159.2009.06403.x
  29. Attawish, A., Chivapat, S., Phadungpat, S., Bansiddhi, J., Techadamrongsin, Y., Mitrijit, O., Chaorai, B. and Chavalittumrong, P. : Chronic toxicity of Gynostemma pentaphyllum. Fitoterapia. 75, 539 (2004). https://doi.org/10.1016/j.fitote.2004.04.010
  30. Lee, M. K., Choi, H. S., Chen, L., Suh, K. H., Shin, K. S., Kim, S. H., Hwang, B. Y. and Lee, J. K. : Neuroprotective effects of herbal butanol extracts from Gynostemma pentaphyllum on the exposure to chronic stress in a 6-hydroxydopamine-lesioned rat model of Parkinson's disease treated with or without LDOPA, Mechanisms in Parkinson's disease-models and treatments. Ch. 18, Intech, 351 (2012).
  31. Basma, A. N., Morris, E. J., Nicklas, W. J. and Geller, H. M. : L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J. Neurochem. 64, 825 (1995).
  32. Megallia, S., Aktanb, F., Daviesc, N. M. and Roufogalisa, B. D. : Phytopreventative anti-hyperlipidemic effects of Gynostemma pentaphyllum in rats. J. Pharm. Pharmaceut. Sci. 8, 507 (2005).
  33. Cenci, M. A. : L-DOPA-induced dyskinesia: cellular mechanisms and approaches to treatment. Parkinsonism Relat. Disord. 13, S263 (2007). https://doi.org/10.1016/S1353-8020(08)70014-2
  34. Tillerson, J. L., Caudle, W. M., Revern, M. E. and Miller, G. W. : Detection of behavioral impairments correlated to neurochemical deficits in mice treated with moderate doses of 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine. Exp. Neurol. 178, 80 (2002). https://doi.org/10.1006/exnr.2002.8021
  35. Mena, M. A., Davila, V. and Sulzer, D. : Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical historicity cocultures. J. Neurochem. 69, 1398 (1997).
  36. Im, S. A., Choi, H. S., Choi, S. O., Kim, K. H., Lee, S., Hwang. B. Y., Lee, M. K. and Lee, C. K. : Restoration of electric footshock-induced immunosuppressionin mice by Gynostemma pentaphyllum components. Molecules. 17, 7695 (2012). https://doi.org/10.3390/molecules17077695
  37. Shang, L., Liu, J., Zhu, Q., Zhao, L., Feng, Y., Wang, X., Cao, W. and Xin, H. : Gypenosides protect primary cultures of rat cortical cells against oxidative neurotoxicity. Brain Res. 1102, 163 (2006). https://doi.org/10.1016/j.brainres.2006.05.035
  38. Wang, Z. J. and Luo, D. H. : Antioxidant activities of different fractions of polysaccharide purified from Gynostemma pentaphyllum Makino. Carbohyd. Polym. 68, 54 (2007). https://doi.org/10.1016/j.carbpol.2006.07.022
  39. Jin, C. M., Yang, Y. J., Huang, H. S., Kai, M. and Lee, M. K. : The mechanisms of L-DOPA-induced cytotoxicity in rat adrenal pheochromocytoma cells: Implications of oxidative stress-related kinases and cyclic AMP. Neuroscience. 170, 390 (2010). https://doi.org/10.1016/j.neuroscience.2010.07.039
  40. Park, K. H., Park, H. J., Shin, K. S., Choi, H. S., Kai, M. and Lee, M. K. : Modulation of PC12 cell viability by forskolininduced cyclic AMP levels through ERK and JNK pathways: an implication for L-DOPA-induced cytotoxicity in nigrostriatal dopamine neurons. Toxicol. Sci. 128, 247 (2012). https://doi.org/10.1093/toxsci/kfs139
  41. Jin, C. M., Yang, Y. J., Huang, H. S., Lim, S. C., Kai, M. and Lee, M .K. : Induction of dopamine biosynthesis by L-DOPA in PC12 cells: Implications of L-DOPA influx and cyclic AMP. Eur. J. Pharmacol. 591, 88 (2008). https://doi.org/10.1016/j.ejphar.2008.06.052
  42. Kulich, S. M. and Chu, C. T. : Role of reactive oxygen species in extracellular signal-regulated protein kinase phosphorylation and 6-hydroxydopamine cytotoxicity. J. Biosci. 28, 83 (2003). https://doi.org/10.1007/BF02970136
  43. Chaturvedi, R, K., Shukla, S., Seth, K., Chauhan, S., Sinha, C., Shukla, Y. and Agrawal, A. K. : Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopaminelesioned rat model of Parkinson's disease. Neurobiol. Dis. 22, 421 (2006). https://doi.org/10.1016/j.nbd.2005.12.008
  44. Spinnewyn, B., Mautino, G., Marin, J. G., Rocher, M. N., Grandoulier, A. S., Ferrandis, E., Auguet, M. and Chabrier, P. E. : BN82451 attenuates L-dopa-induced dyskinesia in 6-OHDA-lesioned rat model of Parkinson's disease. Neuropharmacology 60, 692 (2011). https://doi.org/10.1016/j.neuropharm.2010.11.019
  45. Song, L., Kong, M., Ma, Y., Ba, M. and Liu, Z. : Inhibitory effect of 8-(3-chlorostryryl) caffeine on levodopa-induced motor fluctuation is associated with intracellular signaling pathway in 6-OHDA-lesioned rats. Brain Res. 1276, 171 (2009). https://doi.org/10.1016/j.brainres.2009.04.028
  46. Bae, Y. : Pharmacologic treatment of Parkinson's disease. J. Kor. Soc. Health-Syst. Pharm. 27, 173 (2010).
  47. Visanji, N. P., Orsi, A., Johnston, T. H., Howson, P. A., Dixon, K., Callizot, N., Brotchie, J. M. and Rees, D. D. : PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson's disease. FASEB J. 22, 2488 (2008). https://doi.org/10.1096/fj.07-095398
  48. Zhang, H. N., An, C. N., Zhang, H. N. and Pu, X. P. : Protocatechuic acid inhibits neurotoxicity induced by MPTP in vivo. Neurosci. Lett. 474, 99 (2010). https://doi.org/10.1016/j.neulet.2010.03.016
  49. Antoln, I., Mayo, J. C., Sainz, R. M., del Bro Mde, L., Herrera, F., Martn, V. and Rodrguez, C. : Protective effect of melatonin in a chronic experimental model of Parkinson's disease. Brain Res. 943, 163 (2002). https://doi.org/10.1016/S0006-8993(02)02551-9
  50. Betarbet, R., Sherer, T. B. and Greenamyre, J. T. : Animal models of Parkinson's disease. Bioessays. 24, 308 (2002). https://doi.org/10.1002/bies.10067