A New Triterpenoid Saponin from *Pulsatilla cernua*[†]

Wenhao Fan^{1,3}, Jianyu Liu^{1,3}, Yixia Gong^{1,3}, Jing Ma^{1,3}, Nan Zhou^{1,3}, and Yongnan Xu^{1,2,*}

¹Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education,

Shenyang Pharmaceutical University, Shenyang 110016, China

²School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China

³College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China

Abstract – A new oleanane-type triterpenoid saponin together with six known saponins were isolated from the roots of *Pulsatilla cermua*. Their structures were elucidated on the basis of spectroscopic data, including 2D NMR spectra and chemical evidence. Compounds 1 and 6 are reported from this genus for the first time. **Keywords** – *Pulsatilla cermua*, Ranunculaceae, Triterpenoid saponin

Introduction

The root of *Pulsatilla cernua* (Thunb.) Bercht et Opiz. (Ranunculaceae) is a well known herbal medicine for treatment of amoebic dysentery, malaria, and chills in Northeast China and Korea. Previous phytochemical investigations on this plant have reported a number of triterpenoid saponins (Kang, 1989; Zhang, *et al.*, 2000a; Zhang, *et al.*, 2000b; Bang, *et al.*, 2005a; Xu, *et al.*, 2000c; Xu, *et al.*, 2007; Fu, *et al.*, 2008; Xu, *et al.*, 2010; Yang, *et al.*, 2010; Liu, *et al.*, 2012), and on our previous study, some neuroprotective components were isolated from this plant (Liu, *et al.*, 2012). In continuation to our study, a new saponin (7) together with six known compounds (1-6) were obtained from this plant, This paper deals with the isolation and identification of these compounds on the basis of spectroscopic analysis.

Experimental

General experimental procedures – The NMR spectra were measured in pyridine- d_5 , on a Bruker AV600 instrument. ESI-MS spectra were recorded on Waters Quattro micro API LC/MS/MS spectrometer (Waters, USA). HR-TOF-MS spectra were performed on Agilent LC/MS spectrometer (Agilent, USA). HPLC was performed

on JAI LC9103 Recycling preparative HPLC (Japan Analytical Industries, Japan) equipped with JAIGEL-ODS-AP-P column and JAIGEL-GS310 column using a JAI refractive index detector and a JAI UV-3702 detector with MultiChro 2000 workstation. TLC was performed on pre-coated GF_{254} plates (Merck, Germany) and detected by spraying with 10% H_2SO_4 followed heating. GC analyses were performed using an Agilent GC 6890 instrument on an HP-5 column (320 µm × 30 m, 0.25 µm).

Plant material – The roots of *P. cernua* were collected in May 2011 at Fushun, Liaoning Province, China, and authenticated by Professor Jincai Lu (The School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University). A voucher specimen has been deposited in our laboratory (voucher No. pc-2011-001).

Extraction and Isolation - The dry roots of P. cernua (40 kg) were extracted with 70% EtOH (70 - 80 °C, $3 \times$ 80 L, 2 h, each). The 70% EtOH solution was heated on steam bath to remove EtOH. Aqueous solution with petroleum ether, ethyl acetate, n-butyl alcohol extract three times, condensed into concrete. The n-butyl alcohol extract part was chromatographed over a D101 macroporous resin column $(15 \times 150 \text{ cm})$, eluted successively with water, 30% EtOH, 50% EtOH, 70% EtOH, 95% EtOH. The 50% EtOH eluate and 70% EtOH eluate were evaporated to dryness to give 50% EtOH extract (150 g), and 70% EtOH extract (264 g), respectively. The 70% EtOH crude extract (100 g) was chromatographed on silica gel (1.2 kg, 200 mesh) with CHCl₃-MeOH-H₂O $[(90:10:1, \text{ lower layer} \rightarrow 7:3:0.5, \text{ lower layer}), \text{ to}$ afford five fractions fr.1 (2.6 g), fr.2 (3.5 g), fr.3 (45 g),

^{*}Dedicated to Prof. Sam Sik Kang of the Seoul National University for his leading works on Natural Products Research.

^{*}Author for correspondence

Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China

Tel: +86-24-239-86445; E-mail: ynxu@syphu.edu.cn

fr.4 (12.4 g), fr.5 (18.5 g). Fr.1and fr.4 separated with recycling preparative HPLC (different ratio of methanol-water as eluent, at room temperature, 50 - 70 minutes a cycle) to give compounds 1 (20 mg), 2 (14 mg), 3 (130 mg), 4 (180 mg), 5 (21 mg), 6 (11 mg), and 7 (10 mg), respectively.

Acid hydrolysis and GC analysis - Compound 7 (4 mg) was treated with 1 M HCl (4 mL) at 90 °C for 2 h. The reaction mixture was then extracted with $CHCl_3$ (3 × 5 mL). Acid hydrolysis of 2 - 4 was performed likewise. Each remaining aqueous layer was concentrated to dryness to give a residue and was dissolved in pyridine (2 mL), and then L-cysteine methyl ester hydrochloride (2 mg) was added to the solution. Then the mixture was heated at 60 °C for 1 h, and trimethylchlorosilane (0.5 mL) was added, followed by heating at 60 °C for 30 min. Then, the solution was concentrated to dryness and taken up in water $(1 \text{ mL} \times 3)$, followed by extraction with nhexane (1 mL \times 3). The supernatant was subjected to GC analysis under the following conditions: Agilent GC 6890 instrument equipped with FID (detection temperature 280 °C). Column: HP-5 column (320 μ m × 30 m, 0.25 μ m). Column temperature: 160 - 200 °C with the rate of 4 °C/ min, then kept for 5 min, and then 200 - 240 °C with the rate of 10 °C/min and kept for 10 min. The carrier gas was N_2 (1.0 mL/min), split ratio 1/10, injection temperature: 270 °C. Injection volume: 10 µL. The absolute configurations of the monosaccharides were confirmed to be Larabinose, L-rhamnose, and D-glucose by comparison of the retention times of monosaccharide derivatives with those of standard samples: L-arabinose (12.67 min), L-rhamnose (12.85 min), and D-glucose (14.41 min), respectively.

Hederagenin 3-*O*-α-L-arabinopyranosyl-28-*O*-β-Dglucopyranosyl ester (1) – White amorphous powder. ESI-MS: m/z 789.2 [M + Na]⁺, 805.2 [M + K]⁺. ¹H-NMR (600 MHz, C₅D₅N) δ: 0.84 (6H, s, 2 × CH₃), 0.88, 0.92, 1.09, 1.14 (each 3H, s, CH₃), 4.98 (1H, d, J = 6.6 Hz, H-1 of Ara), 5.39 (1H, brs, H-12), 6.28 (1H, d, J = 8.4 Hz, H-1 of Glc); ¹³C-NMR (150 MHz, C₅D₅N) data see Table 1.

Hederagenin 3-*O*-β-D-glucopyranosyl(1 → 4)-α-Larabinopyranoside (2) – White amorphous powder. ESI-MS: m/z 782.9 [M + Na]⁺, 805.1 [M + K]⁺. ¹H-NMR (600 MHz, C₅D₅N) δ: 0.88, 0.89, 0.91, 0.96, 0.98, 1.20 (each 3H, s, CH₃), 4.86 (1H, d, J = 7.2 Hz, H-1 of Ara), 5.20 (1H, d, J = 7.8 Hz, H-1 of Glc), 5.44 (1H, brs, H-12); ¹³C-NMR (150 MHz, C₅D₅N) data see Table 1.

Hederagenin 3-*O*- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 4)]- α -L-arabinopyranoside (3) – White amorphous powder. ESI-MS: m/z 935.3 [M + Na]⁺, 911.2 [M – H]⁻. ¹H-NMR (600 MHz, C₅D₅N) & 0.89, 0.90, 0.96, 0.97, 1.04, 1.20 (each 3H, s, CH₃), 1.61 (3H, d, J = 6.6 Hz, Rha-6), 4.94 (1H, d, J = 6.6 Hz, H-1 of Ara), 5.05 (1H, d, J = 7.8 Hz, H-1 of Glc), 5.42 (1H, brs, H-12), 6.19 (1H, s, H-1 of Rha); ¹³C-NMR (150 MHz, C₅D₅N) data see Table 1.

Hederagenin 3-O- β -D-glucopyranosyl(1 \rightarrow 4)- β -Dglucopyranosyl(1 \rightarrow 3)- α -L- rhamnopyranosyl(1 \rightarrow 2)- α -L-arabinopyranoside (4) – White amorphous powder. ESI-MS: m/z 1073.2 [M – H]⁻, 1109.1 [M + Cl]⁻. ¹H-NMR (600 MHz, C₅D₅N) & 0.89, 0.90, 0.96, 0.97, 1.06, 1.20 (each 3H, s, CH₃), 1.51 (3H, d, J = 6.0 Hz, Rha-6), 4.97 (1H, d, J = 6.6 Hz, H-1 of Ara), 5.10 (1H, d, J = 7.8 Hz, H-1 of Glc'), 5.37 (1H, d, J = 7.8 Hz, H-1 of Glc), 5.42 (1H, brs, H-12), 6.17 (1H, s, H-1 of Rha); ¹³C-NMR (150 MHz, C₅D₅N) data see Table 1.

Hederagenin 3-*O*- β -D-glucopyranosyl(1 \rightarrow 3)- α -Lrhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 4)]- α -L-arabinopyranoside (5) – White amorphous powder. ESI-MS: m/z 1073.3 [M – H]⁻, 1097.3 [M + Na]⁺. ¹H-NMR (600 MHz, C₅D₅N) δ : 0.89 (6H, s, 2 × CH₃), 0.96, 0.97, 1.07, 1.21 (each 3H, s, CH₃), 1.53 (3H, d, J= 6.6 Hz, Rha-6), 4.86 (1H, d, J= 7.2 Hz, H-1 of Ara), 5.04 (1H, d, J= 7.8 Hz, H-1 of Glc'), 5.43 (1H, d, J= 7.8 Hz, H-1 of Glc), 5.43 (1H, brs, H-12), 6.14 (1H, s, H-1 of Rha); ¹³C-NMR (150 MHz, C₅D₅N) data see Table 1.

Oleanolic acid 3-*O*-α-L-rhamnopyranosyl(1 → 2)-α-L-arabinopyranosyl-28-*O*-β-D-glucopyranosyl ester (6) – White amorphous powder. ESI-MS: m/z 919.3 [M + Na]⁺, 935.3 [M + K]⁺. ¹H-NMR (600 MHz, C₅D₅N) δ: 0.81, 0.84, 0.87, 1.03, 1.06, 1.12, 1.21 (each 3H, s, CH₃), 1.59 (3H, d, J= 6.0 Hz, Rha-6), 4.85 (1H, d, J= 6.0 Hz, H-1 of Ara), 5.38 (1H, brs, H-12), 6.12 (1H, s, H-1 of Rha), 6.29 (1H, d, J= 7.8 Hz, H-1 of Glc); ¹³C-NMR (150 MHz, C₅D₅N) data see Table 1.

Oleanolic acid 3-*O*- β -D-glucopyranosyl(1 \rightarrow 3)- α -Lrhamnopyranosyl(1 \rightarrow 2) [α -L-rhamnopyranosyl(1 \rightarrow 6)- β -D-glucopyranosyl(1 \rightarrow 4)]- α -L-arabinopyranoside (7) – White amorphous powder. ESI-MS: m/z 1203.1 [M – H]⁻. ¹H-NMR (600 MHz, C₅D₅N) & 0.79 (3H, s, CH₃), 0.91 (6H, s, 2 × CH₃), 0.96 (3H, s, CH₃), 1.10 (3H, s, CH₃), 1.26 (6H, s, 2 × CH₃), 1.54 (3H, d, J = 6.0 Hz, Rha-6), 1.52 (3H, d, J = 6.0 Hz, Rha"-6), 4.78 (1H, d, J = 6.0 Hz, H-1 of Ara), 5.10 (1H, d, J = 7.8 Hz, H-1 of Glc), 5.39 (1H, s, H-1 of Rha"), 5.41 (1H, d, J = 7.8 Hz, H-1 of Glc'), 5.42 (1H, brs, 12-H), 6.18 (1H, s, H-1 of Rha); ¹³C-NMR (150 MHz, C₅D₅N) data see Table 1.

Result and Discussion

The EtOH exract of the roots of P. cernua was isolated

No.	1	2	3	4	5	6	7	No.	1	2	3	4	5	6	7
1	39.0	38.3	38.6	38.7	38.7	38.5	38.5	C-3							
2	26.3	25.7	26	26.1	26.2	26.1	26.3	ara	106.9	106.1	104.1	104.7	104.7	104.4	105.0
3	82.1	81.6	80.7	80.9	81.0	88.3	88.3		73.3	73.4	75.8	75.1	75.7	75.5	75.3
4	43.7	43.1	43.1	43.3	43.3	39.2	39.2		75.0	74.3	74.8	74.5	74.9	73.7	75.0
5	47.8	47.2	47.4	47.3	47.3	55.6	55.6		69.9	79.5	80.2	69.5	80.6	68.3	81.5
6	18.4	17.8	17.8	17.9	17.8	18.2	18.3		67.2	66.0	65.2	66.2	65.8	64.3	65.4
7	33.0	32.5	32.5	32.6	33.0	32.7	32.8	glc		106.5	106.4	104.6	106.7		104.7
8	40.2	39.4	39.4	39.5	39.5	39.5	39.3			75.5	75.1	74.9	75.6		71.6
9	48.4	47.8	47.8	47.9	47.9	47.6	47.7			78.5	78.4	78.2	78.2		76.4
10	37.2	36.6	36.5	36.6	36.6	36.6	36.7			70.9	70.8	71.2	70.9		72.7
11	24.1	23.3	23.4	23.5	23.5	23.2	23.4			78.1	78.2	77.9	78.6		76.1
12	123.2	122.2	122.2	122.3	122.3	122.4	122.2			62.2	62.2	62.1	62.3		68.2
13	144.4	144.4	144.5	144.6	144.5	143.7	144.1	rha"							102.4
14	42.4	41.8	41.8	41.9	41.9	41.7	41.8								71.4
15	28.5	28.0	28	28.1	28.1	27.6	27.9								72.3
16	23.6	23.5	23.3	23.4	23.4	23	23.4								73.7
17	47.2	46.0	46.3	46.4	46.4	46.6	46.4								69.3
18	42.0	41.6	41.6	41.7	41.7	41.3	41.6								18.1
19	46.4	46.3	46.1	46.1	46.2	45.7	45.4	rha			101.3	101.2	101.2	101.3	101.3
20	31.0	30.6	30.6	30.7	30.7	30.3	30.6				71.9	71.5	71.4	72.0	71.3
21	34.2	33.8	33.9	33.9	34.0	33.5	33.8				72.1	83.1	82.6	72.2	83.2
22	32.8	32.9	32.9	33.0	32.6	32.1	32.8				73.7	72.8	72.7	73.6	69.5
23	64.7	64.1	63.6	63.7	63.6	27.8	27.8				69.3	69.4	69.6	69.5	69.0
24	13.8	13.2	13.7	13.9	13.9	16.5	16.8				18.3	18.2	18.3	18.1	18.1
25	16.4	15.7	15.7	15.8	15.8	15.2	15.2	glc'				106.3	106.7		106.2
26	17.8	17.1	17.1	17.2	17.2	17	17					75.2	75.2		74.2
27	26.1	25.8	25.8	25.9	25.9	25.6	25.8					76.4	78.2		77.8
28	176.7	179.8	179.7	180.0	179.9	176	180.1					80.8	71.4		74.4
29	33.3	32.9	32.9	33.0	33.0	32.7	32.9					76.4	78.4		76.2
30	23.9	23.4	23.4	23.5	23.5	23.4	23.4					61.5	62.2		61.4
								C-28							
								glc	96.0					95.3	
									74.4					73.4	
									79.6					78.5	
									71.3					70.6	
									79.1					78.9	
									62.4					61.7	

Table 1. ¹³C-NMR data of compounds **1** - **7** (pyridine- d_5 , δ).

and further purified to give seven saponins. Compounds 1 and **6** are reported from this genus for the first time, and the structures were identified as hederagenin 3-*O*- α -Larabinopyranosyl-28-*O*- β -D-glucopyranosyl ester (1) (Kizu, *et al.*, 1985), hederagenin 3-*O*- β -D-glucopyranosyl(1 \rightarrow 4)- α -L-arabinopyranoside (2) (Li, *et al.*,1990), hederagenin 3-*O*- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 4)]- α -L-arabinopyranoside (3) (Zhang, *et al.*, 2000a), hederagenin 3-*O*- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl(1 \rightarrow 2)- α -L-arabinopyranoside (4) (Bang, *et al.*, 2005b), hederagenin 3-*O*- β -D-glucopyranosyl(1 \rightarrow 3)- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 4)]- α -L-arabinopyranoside (5) (Mimaki, *et al.*, 2009), oleanolic acid 3-*O*- α -L-rhamnopyranosyl(1 \rightarrow 2)- α -L-arabinopyranosyl-28-*O*- β -D-glucopyranosyl ester (6) (Saito, *et al.*, 1993).

Compound 7 was obtained as white amorphous powder, ESI-MS: m/z 1203.1 [M – H]⁻. The molecular

Fig. 1. Structures of compounds 1 - 7.

formula of 7 was determined as C₅₉H₉₆O₂₅ from HR-TOF-MS (m/z 1227.6181 [M + Na]⁺, calc. 1227.6133). The compound displayed 59 carbon signals in the ¹³C-NMR spectrum, of which 30 were assigned to the aglycone and the remaining 29 to the sugar moieties. The seven methyl carbon signals at $\delta_{\rm C}$ 15.2, 16.8, 17.0, 23.4, 25.8, 27.8, and 32.9, and the two olefinic carbon signals at δ_{C} 122.2 and 144.1, coupled with the $^{1}\text{H-NMR}$ data, seven tertiary methyl proton singlets at δ_H 0.79, 0.91, 0.91, 0.96, 1.10, 1.26, and 1.26, and a broad triplet-like olefinic proton signal at δ_H 5.42 (brs), indicated that the aglycone possessed an olean-12-ene skeleton. The ¹H-NMR spectrum showed five anomeric proton signals at $\delta_{\rm H}$ 4.78 (d, J = 6.0 Hz, H-1 of Ara), 5.10 (d, J = 7.8 Hz, H-1 of Glc), 5.39 (s, H-1 of Rha''), 5.41 (d, J = 7.8 Hz, H-1 of Glc'), 5.42 (brs, 12-H), 6.18 (1H, s, H-1 of Rha), as well as two methyl doublets of rhamnose at $\delta_{\rm H}$ 1.54 (3H, d, J = 6.0 Hz, rha-6), 1.52 (3H, d, J = 6.0 Hz, rha"-6), and the corresponding anomeric carbon signals at $\delta_{\rm C}$ 101.3, 102.4, 104.7, 105.0 and 106.2, respectively (Table 1). The chemical shifts of δ_C 88.3 (C-3) revealed that 7 was a monodesmosides saponin with a glycosidic linkage at C-3 through an O-heterosidic bond. The linkage of the sugar moiety at C-3 of the aglycone was established from the HMBC correlations between δ 105.0 (ara-1), δ 4.78 (d, J = 7.8 Hz, H-1 of Ara) and δ 88.3 (C-3), δ 5.10 (d, J = 7.8 Hz, H-1 of Glc) and δ 81.5 (ara-4), δ 6.18 (1H, s,

Fig. 2. Key HMBC correlations of compound 7.

H-1 of Rha) and δ 75.3 (ara-2), δ 5.41 (d, J = 7.8 Hz, H-1 of Glc') and δ 83.2 (rha-3), δ 5.39 (s, H-1 of Rha") and δ 68.2 (glc-6), Based on the above evidence, the structure of 7 was determined to be oleanolic acid $3-O-\beta$ -D-glucopyranosyl($1\rightarrow 3$)- α -L-rhamnopyranosyl($1\rightarrow 2$)[α -L-rhamnopyranosyl($1\rightarrow 6$)- β -D-glucopyranosyl($1\rightarrow 4$)]- α -L-arabinopyranoside.

References

- Bang, S.-C., Lee, J.-H., Song, G.-Y., Kim, D.-H., Yoon, M.-Y., and Ahn, B.-Z., Antitumor activity of *Pulsatilla koreana* saponins and their structure-activity relationship. *Chem. Pharm. Bull.* 53, 1451-1454 (2005a).
- Bang, S.-C., Kim, Y., Lee, J.-H., and Ahn, B.-Z., Triterpenoid saponins from the roots of *Pulsatilla koreana*. J. Nat. Prod. 68, 268-272 (2005b).
- Fu, Y.-M., Chen, H., Liu, D.-L., and Zhang, Z.-M., Study on the chemical components of *Pulsatilla cernua*. *Chin. Tradit. Herbal Drugs* **39**, 26-29 (2008).
- Kang, S.-S., Saponins from the roots of *Pulsatilla koreana*. Arch. Pharm. Res. 12, 42-47 (1989).
- Kizu, H., Kitayama, S., Nakatani, F., Tomimori, T., and Namba, T., Studies on Nepalese Crude Drugs. III. On the saponins of *Hedera nepalensis* K. KOCH. *Chem.Pharm.Bull*, **33**, 3324-3329 (1985).
- Li, X.-C, Wang, D.-Z., Wu, S.-G, and Yang, C.-R., Triterpenond saponins from *Pulsatilla koreana*. *Phytochemistry* 29, 595-599 (1990).
- Liu, J.-Y., Guan, Y.-L., Zou, L.-B., Gong, Y.-X., Hua, H.-M., Xu, Y.-N., Zhang, H., Yu, Z.-G., and Fan, W.-H., Saponins with neuroprotective effects from the roots of *Pulsatilla cernua*. *Molecules* 17, 5520-5531 (2012).
- Mimaki, Y., Watanabe, K., Matsuo, Y., and Sakagami, H., Triterpene glycosides from the tubers of *Anemone coronaria*. *Chem. Pharm. Bull.* 57, 724-729 (2009).
- Saito, S., Ebashi, J., Sumita, S., Furumoto, T., Nagamura, Y., Nishida, K., and Isiguro, I., Comparison of cytoprotective effects of saponins isolated from leaves of *Aralia elata Seem*.(Araliaceae) with synthesized bisdesmosides of oleanoic acid and hederagenin on carbon tetrachloride-induced hepatic injury. *Chem. Pharm. Bull.* 41, 1395-1401 (1993).
- Xu, T.-H., Xu, Y.-J., Han, D., Zhao, H.-F., Xie, S.-X., and Xu, D.-M., Triterpenoid saponins from *Pulsatilla cernua* (Thunb.) Bercht. et Opiz. J. Integr. Plant Biol. 49, 202-206 (2006).
- Xu, T.-H., Xu, Y.-J., Li, H.-X., Han, D., Zhao, H.-F., Xie, S.-X., Li, Y., Niu, J.-Z., Si, Y.-S., and Xu, D.-M., Two new triterpenoid saponins

154

Natural Product Sciences

from *Pulsatilla cernua* (Thunb.) Bercht. et Opiz. J. Asian Nat. Prod. Res. 9, 705-711 (2007).

- Xu, Y.-J., Bai, L., Liu, Y.-H., Liu, Y., Xu, T.-H., Xie, S.-X., Si, Y.-S., Zhou, H.-O., Liu, T.-H., and Xu, D.-M., A new triterpenoid saponin from *Pulsatilla cernua*. *Molecules* **15**, 1891-1897 (2010).
- Yang, H., Cho, Y.-W., Kim, S.-H., Kim, Y.-C., and Sung, S.-H., Triterpenoidal saponins of *Pulsatilla koreana* roots. *Phytochemistry* 71, 1892-1899 (2010).

Zhang, Q.-W., Ye, W.-C., Che, C.-T., and Zhao, S.-X., Triterpene saponins

from *Pulsatilla cernua. Acta Pharm. Sin.* **35**, 756-759 (2000a). Zhang, Q.-W., Ye, W.-C., Yan, X.-Z., Zhu, G, Che, C.-T., and Zhao, S.-

X., Cernuosides A and B, two sucrase inhibitors from *Pulsatilla cernua*. J. Nat. Prod. 63, 276-278 (2000b).

Received May 18, 2013 Revised June 7, 2013 Accepted June 14, 2013