DOI QR코드

DOI QR Code

Isolation of Antioxidative Products and Evaluation of the Pancreatic Lipase Inhibitory Activity of (+)-Catechin via Thermal Treatment

(+)-Catechin 가열처리에 의한 항산화 활성물질 분리 및 pancreatic lipase 저해활성 평가

  • Son, Ah Young (Department of Cosmetic Pharmacology, Daegu Haany University) ;
  • Lee, Jin Tae (Department of Cosmetic Pharmacology, Daegu Haany University) ;
  • Kwon, O Jun (Daegyeong Institute for Regional Program Evaluation) ;
  • Kim, Taewan (Department of Food Science and Biotechnology, Andong National University) ;
  • Kim, Tae Hoon (Department of Herbal Medicinal Pharmacology, Daegu Haany University)
  • 손아영 (대구한의대학교 화장품약리학과) ;
  • 이진태 (대구한의대학교 화장품약리학과) ;
  • 권오준 (대경지역사업평가원) ;
  • 김태완 (안동대학교 식품생명공학과) ;
  • 김태훈 (대구한의대학교 한약재약리학과)
  • Received : 2013.02.14
  • Accepted : 2013.04.12
  • Published : 2013.04.30

Abstract

Thermal processing of (+)-catechin was carried out at $121^{\circ}C$ for different reaction times (1, 2, 3, 6, and 12 h). The reacted products, compounds (1) and (2), were isolated and quantified via HPLC analysis. The antioxidant properties of processed (+)-catechin and its isolated compounds for different reaction time was measured via radical scavenging assays using DPPH and $ABTS^+$ radicals. Additionally, the anti-obesity efficacy of the thermal treated (+)-catechin was evaluated via porcine pancreatic lipase assay. The reacted (+)-catechin for 3 h had a slightly higher antioxidant capacity than that the parent (+)-catechin. Products 1 and 2, which were isolated from the reacted mixture during 3 h, showed an antioxidant capacity, and these two compounds may be responsible for the antioxidant capacity of processed (+)-catechin. Simple thermal treatment of (+)-catechin can be used to produce (+)-epicatechin (1) and protocatechuic acid (2) with enhanced antioxidant and anti-adipogenic effects.

(+)-Catechin을 $121^{\circ}C$에서 0, 1, 2, 3, 6, 12 h 동안 가열처리 하여 각각의 결과물에 대하여 DPPH 및 $ABTS^+$ radical 소거능 및 pancreatic lipase 저해활성을 평가하였다. DPPH 라디칼 소거능은 (+)-catechin의 3 h 가열결과물에서 가장 강한 활성인 $6.3{\pm}0.4{\mu}g/mL$$IC_{50}$값을 나타내었으며 6 h 가열결과물에서 $6.5{\pm}0.3{\mu}g/mL$$IC_{50}$ 값을 나타내었으며, 이들 활성은 (+)-catechin과 비교하였을 경우에도 높은 활성을 나타냄을 확인하였다. 또한 $ABTS^+$ 라디칼 소거능은 (+)-catechin의 3 h 가열결과물에서 가장 강한 활성인 $1.8{\pm}0.1{\mu}g/mL$$IC_{50}$값을 나타내었으며, 3 h 가열반응물로부터 분리한 화합물 중 화합물(1)과 화합물(2)가 이들 활성에 관여함을 시사하였다. 항비만 활성평가에 활용되고 있는 pancreatic lipase를 이용한 효능 평가에서 3 h 반응물의 $IC_{50}$값이 $377.1{\pm}11.1{\mu}g/mL$임을 확인하였고, 가열처리군별 HPLC 크로마토그램 및 상대함량으로 부터 (+)-catechin의 가열처리에 의해서 생성됨을 물질분리를 통해 구조결정한 (+)-epicatechin 및 protocatechuic acid 이외에 pancreatic lipase 저해활성을 나타내는 물질의 존재가 시사되었다. 향후 식품 및 음료에 광범위하게 존재하는 (+)-catechin의 가열조건에 따른 활성변화에 대한 보다 다양한 조건에서의 체계적인 연구가 필요하며 본 연구결과는 화합물의 구조변환을 통한 활성물질 개발을 위한 기초자료로 이용될 수 있을 뿐만 아니라 단일물질의 화학적 변화와 관련된 성분연구에 대한 기초자료로 활용가능하리라 사료된다.

Keywords

References

  1. Skrzydlewska E, Ostrowska J, Farbiszewski R, Michalak K (2002) Protective effect of green tea against lipid peroxidation in the rat liver, blood serum and the brain. Phytomedicine, 9, 232-238 https://doi.org/10.1078/0944-7113-00119
  2. Yokozawa T, Nakagawa T, Kitani K (2002) Antioxidative activity of green tea polyphenol in cholesterol-fed rats. J Agric Food Chem, 50, 3549-3552 https://doi.org/10.1021/jf020029h
  3. Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol, 72, 1439-1452 https://doi.org/10.1016/j.bcp.2006.07.004
  4. Ferrándiz ML, Alcaraz MJ (1991) Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions 32, 283-288 https://doi.org/10.1007/BF01980887
  5. Sabu MC, Smitha K, Kuttan R (2002) Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol, 83, 109-116 https://doi.org/10.1016/S0378-8741(02)00217-9
  6. Hollman PC, Arts IC (2000) Flavonols, flavones and flavanols—nature, occurrence and dietary burden. J Sci Food Agric 80, 1081-1093 https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2-G
  7. Hou WC, Lin RD, Chen CT, Lee MH (2005) Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J Ethnopharmacol, 100, 216-220 https://doi.org/10.1016/j.jep.2005.03.017
  8. Natsume M, Osakabe N, Yamagishi M, Takizawa T, Nakamura T, Miyatake H, Hatano T, Yoshida T (2000) Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem, 64, 2581-2587 https://doi.org/10.1271/bbb.64.2581
  9. Donovan JL, Crespy V, Manach C, Morand C, Besson C, Scalbert A, Rémésy C (2001) Catechin is metabolized by both the small intestine and liver of rats. J Nutr, 131, 1753-1757
  10. Ahmad S (1995) Oxidative stress and antioxidant defenses in biology. Chapman & Hall, New York, USA, p 240-272
  11. Halliwell B (1991) Drug antioxidant effects. Drugs, 42, 569-605 https://doi.org/10.2165/00003495-199142040-00003
  12. Shim JS, Kim SD, Kim TS, Kim KN (2005) Biological activities of flavonoid glycosides isolated from Angelica keiskei. Korean J Food Sci Technol, 37, 78-83
  13. Branen AL (1975) Toxicology and biochemistry of butylated hydroxy anisole and butylated hydoxytoluane. J Oil Chem Soc, 52, 59-62 https://doi.org/10.1007/BF02901825
  14. Masaki H, Sakaki S, Atsumi T, Sakurai H (1995) Active-oxygen scavenging activity of plants extracts. Biol Pharm Bull, 18, 162-166 https://doi.org/10.1248/bpb.18.162
  15. Bitou N, Nimomiya M. Tsujita T, Okuda H (1999) Screening of lipase inhibitors from marine algae. Lipids, 34, 441-445 https://doi.org/10.1007/s11745-999-0383-7
  16. Drent ML, Larsson I, William-Olsson T, Quaade F, Czubayko F, Von Bergmann K, Strobel W, Sjostrom L, Van der Veen EA (1995) Orlistat (RO 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obesity, 19, 221-226
  17. Hadvary P, Lengsfeld H, Wolfer H (1988) Inhibition of pancreatic lipase in vitro by covalent inhibitor tetrahydrolipstatin. Biochem J, 256, 357-361
  18. Peter C, Williams G (2001) Drug treatment of obesity: from past failures to future successes? Br J Clin Pharmacol, 51, 135-141
  19. Yamamoto M, Shimura S, Itoh M, Egawa M, S Ionue, Ohsaka T (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obesity, 24, 758-764 https://doi.org/10.1038/sj.ijo.0801222
  20. Birari RB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today, 12, 879-889 https://doi.org/10.1016/j.drudis.2007.07.024
  21. Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR, Jang SJ, Kim TH (2010) Pancreatic lipase inhibition by C-glucosidic flavones isolated from Eremochloa ophiuroides. Molecules, 15, 8251-8259 https://doi.org/10.3390/molecules15118251
  22. Hong JY, Shin SR, Bae MJ, Bae JS, Lee IC, Kwon OJ, Jung JW, Kim YH, Kim TH (2010) Pancreatic lipase inhibitors isolated from the leaves of cultivated mountain ginseng (Panax ginseng). Korean J Food Preserv, 17, 727-732
  23. Kim TH, Kim JK, Ito H, Jo C (2011) Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg Med Chem Lett, 21, 1512-1514 https://doi.org/10.1016/j.bmcl.2010.12.122
  24. Park CH, Chung BY, Lee SS, Bai HW, Cho JY, Jo C, Kim TH (2013) Radiolytic transformation of rotenone with potential anti-adipogenic activity. Bioorg Med Chem Lett, 23, 1099-1103 https://doi.org/10.1016/j.bmcl.2012.12.003
  25. Blois MS (1958) Antioxidant activity determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  26. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radical Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  27. Kim JH, Kim HJ, Park HW, Youn SH, Choi DY, Shin CS (2007) Development of inhibitors against lipase and alpha-glucosidase from derivatives of monascus pigment. FEMS Microbiol Lett, 276, 93-98 https://doi.org/10.1111/j.1574-6968.2007.00917.x
  28. Torel J, Cillard J, Cillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry, 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  29. Cooke D, Bloom S (2006) The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov, 5, 919-931 https://doi.org/10.1038/nrd2136
  30. Eom SH, Lee MS, Lee EW, Kim YM, Kim TH (2013) Pancreatic lipase inhibitor activity of phlorotannins isolated from Eisenia bicyclis. Phytother Res, 27, 148-151 https://doi.org/10.1002/ptr.4694
  31. Ahn JH, Liu Q, Lee C, Ahn MJ, Yoo HS, Hwang BY (2012) A new pancreatic lipase inhibitor from Broussonetia kanzinoki. Bioorg Med Chem Lett, 22, 2760-2763 https://doi.org/10.1016/j.bmcl.2012.02.088
  32. Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, Ohtake Y (2007) Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J Agric Food Chem, 55, 4604-4609 https://doi.org/10.1021/jf070569k
  33. Liu W, Zheng Y, Han L, Wang H, Saito M, Ling M, Kimura Y, Feng Y (2008) Saponins (ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet induced obesity in mice. Phytomedicine, 15, 1140-1145 https://doi.org/10.1016/j.phymed.2008.07.002
  34. Taniguchi S, Kuroda K, Doi K, Inada K, Yoshikado N, Yoneda Y, Tanabe M, Shinata T, Yoshida T, Hatano T (2007) Evaluation of gambir quality based on quantitative analysis of polyphenolic constituents. Yakugaku Zasshi, 127, 1291-1300 https://doi.org/10.1248/yakushi.127.1291
  35. Yamanaka M, Shimomura K, Sasaki K, Yoshihira K, and Ishimaru K (1995) Glucosylation of phenolics by hair root cultures of Lobelia sessilifolia. Phytochemistry, 40, 1149-1150 https://doi.org/10.1016/0031-9422(95)00456-H

Cited by

  1. In vitro Antioxidant Activity and α-Glucosidase and Pancreatic Lipase Inhibitory Activities of Several Korean Sanchae vol.47, pp.2, 2015, https://doi.org/10.9721/KJFST.2015.47.2.164