DOI QR코드

DOI QR Code

Proximate Composition, Amino Acid, Mineral, and Heavy Metal Content of Dried Laver

  • Hwang, Eun-Sun (Department of Nutrition and Culinary Science, Hankyong National University) ;
  • Ki, Kyung-Nam (Korean Foods Global Center, Hankyong National University) ;
  • Chung, Ha-Yull (Korean Foods Global Center, Hankyong National University)
  • Received : 2013.03.28
  • Accepted : 2013.05.09
  • Published : 2013.06.30

Abstract

Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and ${\gamma}$-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals.

Keywords

References

  1. Nisizawa K, Noda H, Kikuchi R, Watanabe T. 1987. The main seaweed foods in Japan. Hydrobiol 151/152: 5-29. https://doi.org/10.1007/BF00046102
  2. Sahoo D, Tang X, Yarish C. 2002. Porphyra-the economic seaweed as a new experimental system. Curr Sci 83: 1313- 1316.
  3. FAO. 2007. Yearbook of fishery statistics 2005. Food and Agricultural Organization, Rome, Italy. Vol 100-1/2.
  4. Burtin P. 2003. Nutritional value of seaweeds. Elect J Environ Agric Food Chem 2: 498-503.
  5. Bocanegra A, Bastida S, Benedi J, Rodenas S, Sánchez-Muniz FJ. 2009. Characteristics and nutritional and cardiovascularhealth properties of seaweeds. J Med Food 12: 236-258. https://doi.org/10.1089/jmf.2008.0151
  6. Galland-Irmouli AV, Fleurence J, Lamghari R, Luçon M, Rouxel C, Barbaroux O, Bronowicki JP, Villaume C, Gueant JL. 1999. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J Nutr Biochem 10: 353-359. https://doi.org/10.1016/S0955-2863(99)00014-5
  7. Sanchez-Machado DI, Lopez-Cervantes J, Lopez-Hernández J, Paseiro-Losada P. 2004. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85: 439-444. https://doi.org/10.1016/j.foodchem.2003.08.001
  8. Dawczynski C, Schubert R, Jahreis G. 2007. Amino acids, fatty acids, and dietary fiber in edible seaweed products. Food Chem 103: 891-899. https://doi.org/10.1016/j.foodchem.2006.09.041
  9. Romarís-Hortas V, García-Sartal C, del Carmen Barciela- Alonso M. 2011. Bioavailability study using an in-vitro method of iodine and bromine in edible seaweed. Food Chem 124: 1747-1752. https://doi.org/10.1016/j.foodchem.2010.07.117
  10. Gupta S, Abu-Ghannam N. 2011. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg Technol 12: 600-609. https://doi.org/10.1016/j.ifset.2011.07.004
  11. Ito K, Hori K. 1989. Seaweed: chemical composition and potential uses. Food Rev Int 5: 101-144. https://doi.org/10.1080/87559128909540845
  12. Wong KH, Cheung PCK. 2000. Nutritional evaluation of some subtropical red and green seaweeds. Part I-proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71: 475-482. https://doi.org/10.1016/S0308-8146(00)00175-8
  13. Ruperez P. 2002. Mineral content of edible marine seaweeds. Food Chem 79: 23-26. https://doi.org/10.1016/S0308-8146(02)00171-1
  14. MacArtain R, Gill CIR, Brooks M, Campbell R, Rowland IR. 2007. Nutritional value of edible seaweeds. Nutr Rev 65: 535-543. https://doi.org/10.1111/j.1753-4887.2007.tb00278.x
  15. Rodenas de la Rocha S, Sanchez-Muniz FJ, Gomez-Juaristi M, Marin MTL. 2009. Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. J Food Comp Anal 22: 330-336. https://doi.org/10.1016/j.jfca.2008.10.021
  16. Sartal CG, Barciela-Alonso MC, Bermejo-Barrenra P. 2012. Effect of the cooking procedure on the arsenic speciation in the bioavailable (dialyzable) fraction from seaweed. Microchem J 105: 65-71. https://doi.org/10.1016/j.microc.2012.08.001
  17. AOAC. 1995. Official methods of analysis. Association of Official Analytical Chemists, Washington, DC, USA.
  18. Behairy AKA, El-Sayed MM. 1983. Biochemical composition of some marine brown algae from Jeddah Coast, Saudi Arabia. Indian J Marine Sci 12: 200-201.
  19. Portugal TR, Ladines EO, Ardena SS, Resurreccion L, Medina CR, Matibag PM. 1983. Nutritive value of some Philippine seaweeds part II: Proximate, amino acids and vitamin composition. Philip J Nutr 78: 166-172.
  20. Fleurence J, Gutbier G, Mabeau S, Leray C. 1994. Fatty acids from 11 marine macroalgae of the French Brittany coast. J Appl Physiol 6: 527-532.
  21. Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H. 2011. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128: 895-901. https://doi.org/10.1016/j.foodchem.2011.03.114
  22. Fleurence J. 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10: 25-28. https://doi.org/10.1016/S0924-2244(99)00015-1
  23. Norziah MH, Ching CY. 2000. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem 68: 69-76. https://doi.org/10.1016/S0308-8146(99)00161-2
  24. Denis C, Morançais M, Li M, Deniaud E, Gaudin P, Wielgosz- Collin G, Barnathan G, Jaouen P, Fleurence J. 2010. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Britany (France). Food Chem 119: 913-917. https://doi.org/10.1016/j.foodchem.2009.07.047
  25. Fujiwara-Arasaki T, Mino N, Kuroda M. 1984. The protein value in human nutrition of edible marine algae in Japan. Hydrobiol 116/117: 513-516. https://doi.org/10.1007/BF00027735
  26. Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernandez J, Bozzo C, Navarrete E, Osorio A, Rios A. 2006. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem 99: 98-104. https://doi.org/10.1016/j.foodchem.2005.07.027
  27. Mabeau S, Cavaloc E, Fleurence J, Lahaya M. 1992. New seaweed based ingredients for the food industry. Int Food Ing 3: 38-45.
  28. McLachlan J, Craigie JS, Chen LCM, Ogetze E. 1972. Porphyra linearis Grev: an edible species of nori from Nova Scotia. Proc Int Seaweed Symp 7: 473-476.
  29. Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chem Y. 2010. The potential protective effects of taurine on coronary heart disease. Atherosclerosis 208: 19-25. https://doi.org/10.1016/j.atherosclerosis.2009.06.002
  30. Militante JD, Lombardini JB. 2002. Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 23: 381-393. https://doi.org/10.1007/s00726-002-0212-0
  31. Schaffer SW, Azuma J, Mozaffari M. 2009. Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87: 91-99. https://doi.org/10.1139/Y08-110
  32. Zulli A. 2010. Taurine in cardiovascular disease. Curr Opin Clin Nutr Metab Care 14: 57-69.
  33. Manyam BV, Katz L, Hare TA, Kaniefski K, Tremblay RD. 1981. Isoniazid-induced elevation of cerebrospinal fluid (CSF) GABA levels and effects on chorea in Huntington's disease. Ann Neurol 10: 35-37. https://doi.org/10.1002/ana.410100107
  34. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. 2007. Synthesis of $\gamma$-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73: 7283-7290. https://doi.org/10.1128/AEM.01064-07
  35. Lee SM, Lewis J, Buss DH, Holcombe GD, Lawrence PR. 1994. Iodine in British foods and diets. Brit J Nutr 72: 435- https://doi.org/10.1079/BJN19940045
  36. Drum R. 2003. Sea Vegetables for Food and Medicine. http://www.ryandrum.com/seaxpan1.html (accessed Feb 2013).
  37. Misurcova L, Machu L, Orsavova J. 2011. Seaweed minerals as nutraceuticals. Adv Food Nutr Res 64: 371-390. https://doi.org/10.1016/B978-0-12-387669-0.00029-6
  38. Yoshie Y, Suzuki T, Shirai T, Hirano T. 1994. Changes in the contents of dietary fibers, minerals, free amino acids, and fatty acids during processing of dry Nori. Nippon Suisan Gakkaishi 60: 117-123. https://doi.org/10.2331/suisan.60.117
  39. Ortega-Calvo JJ, Mazuelos C, Hermosin B, Saiz-Jimenez C. 1993. Chemical composition of Spirulina and eucaryotic algae food products marketed in Spain. J Appl Physiol 5: 425-435.
  40. Almela C, Clemente MJ, Vélez D, Montoro R. 2006. Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem Toxicol 44: 1901- 1908. https://doi.org/10.1016/j.fct.2006.06.011
  41. van Netten C, Hoption Cann SA, Morley DR, Netten JP. 2000. Elemental and radioactive analysis of commercially available seaweed. Sci Total Environ 255: 169-175. https://doi.org/10.1016/S0048-9697(00)00467-8
  42. Phillips DJH. 1990. Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aqu Toxicol 16: 151-186. https://doi.org/10.1016/0166-445X(90)90036-O
  43. Struck BD, Pelzer R, Ostapczuk P, Emons H, Mohl C. 1997. Statistical evaluation of ecosystem properties influencing the uptake of As, Cd, Co, Cu, Hg, Mn, Ni, Pb and Zn in seaweed (Fucus vesiculosus) and common mussel (Mytilus edulis). Sci Total Environ 207: 29-42. https://doi.org/10.1016/S0048-9697(97)00246-5
  44. Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vicente ME. 2005. Biosorption of cadmium by biomass of brown marine macroalgae. Biores Technol 96: 1796-1803. https://doi.org/10.1016/j.biortech.2005.01.002
  45. Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC. 2006. Seasonal variation in the chemical composition of two tropical seaweeds. Biores Technol 97: 2402-2406. https://doi.org/10.1016/j.biortech.2005.10.014

Cited by

  1. Nutritional profiling of Pyropia acanthophora var. robusta (Bangiales, Rhodophyta) from Indian waters vol.29, pp.4, 2017, https://doi.org/10.1007/s10811-017-1096-4
  2. Temporal and spatial variations in the proximate composition, amino acid, and mineral content of Pyropia yezoensis vol.28, pp.6, 2016, https://doi.org/10.1007/s10811-016-0862-z
  3. The Analysis of Proximate Composition, Minerals and Amino Acid Content of Red Alga Pyropia dentata by Cultivation Sites vol.29, pp.1, 2013, https://doi.org/10.13047/kjee.2015.29.1.001
  4. 원산지별 김의 일반성분 및 무기질, 아미노산 함량 비교 vol.30, pp.1, 2013, https://doi.org/10.13047/kjee.2016.30.1.098
  5. Optimization of Drying Process for Squid-Laver Snack by a Combined Method of Fuzzy Synthetic and Response Surface Methodology vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/9761356
  6. Bioactive Compounds of Edible Purple Laver Porphyra sp. (Nori) vol.65, pp.49, 2013, https://doi.org/10.1021/acs.jafc.7b04688
  7. Metabolome profiling of various seaweed species discriminates between brown, red, and green algae vol.249, pp.6, 2013, https://doi.org/10.1007/s00425-019-03134-1
  8. Green seaweeds (Ulva fasciata sp.) as nitrogen source for fungal cellulase production vol.35, pp.6, 2013, https://doi.org/10.1007/s11274-019-2658-1
  9. Survey for acrylamide in processed foods from Korean market and individual exposure estimation using a non-parametric probabilistic model vol.37, pp.6, 2020, https://doi.org/10.1080/19440049.2020.1746410
  10. 방사선 돌연변이 방사무늬김(Pyropia yezoensis)의 성분 분석과 항산화 활성 vol.53, pp.4, 2020, https://doi.org/10.5657/kfas.2020.0524