DOI QR코드

DOI QR Code

Change of Surface and Electrical Characteristics of Silicon Wafer by Wet Etching(1) - Surface Morphology Changes as a Function of HF Concentration -

습식 식각에 의한 실리콘 웨이퍼의 표면 및 전기적 특성변화(1) - 불산 농도에 따른 표면형상 변화 -

  • 김준우 (금오공과대학교 신소재시스템공학부) ;
  • 강동수 (금오공과대학교 신소재시스템공학부) ;
  • 이현용 (금오공과대학교 신소재시스템공학부) ;
  • 이상현 ((주)eCONY) ;
  • 고성우 ((주)eCONY) ;
  • 노재승 (금오공과대학교 신소재시스템공학부)
  • Received : 2013.03.19
  • Accepted : 2013.06.11
  • Published : 2013.06.27

Abstract

The electrical properties and surface morphology changes of a silicon wafer as a function of the HF concentration as the wafer is etched were studied. The HF concentrations were 28, 30, 32, 34, and 36 wt%. The surface morphology changes of the silicon wafer were measured by an SEM ($80^{\circ}$ tilted at ${\times}200$) and the resistivity was measured by assessing the surface resistance using a four-point probe method. The etching rate increased as the HF concentration increased. The maximum etching rate 27.31 ${\mu}m/min$ was achieved at an HF concentration of 36 wt%. A concave wave formed on the wafer after the wet etching process. The size of the wave was largest and the resistivity reached 7.54 $ohm{\cdot}cm$ at an 30 wt% of HF concentration. At an HF concentration of 30 wt%, therefore, a silicon wafer should have good joining strength with a metal backing as well as good electrical properties.

Keywords

References

  1. K. E. Petersen, IEEE. 70(5), 239-248 (1988).
  2. S. Middelhoek and A. C. Hoogerwerf, Smart sensors: when and where? Sensor and Actuators, 8, 39-48 (1985). https://doi.org/10.1016/0250-6874(85)80023-8
  3. H. K. Tenshoff, M. Hartmann, M. Klein, p. 168-171, M. Manfrad, H. Kunzmann, Aachen, Germany (1994).
  4. H. Lundt, A. Huber, P. O. Hahn, 7th ed., p. 218-224, H. R. Huff, W. bergholz, K. Sumino, Processing of the 7th International Symposium on silicon Materials Science and Technology. Germany (1994).
  5. B Schwartz and H Robbins, J. Electrochem. Soc, 123(12), 1903-1909 (1976). https://doi.org/10.1149/1.2132721
  6. D. Martin Knotter, J Am Chem Soc., 122, 4345-4351 (2000). https://doi.org/10.1021/ja993803z
  7. Minbok Jun and Sam K. Jo. J. Phys. Chem. 155, 23463- 23469 (2011).
  8. B Schwartz and H Robbins, J. Electrochem. Soc, 106(6), 505-508 (1959). https://doi.org/10.1149/1.2427397
  9. B Schwartz and H Robbins, J. Electrochem. Soc, 107(2), 108-111 (1960). https://doi.org/10.1149/1.2427617
  10. B Schwartz and H Robbins, J. Electrochem. Soc, 108(4), 365-372 (1961). https://doi.org/10.1149/1.2428090
  11. C. Chartier, S. Bastide and C. Levy-Clement, Electrochimica Acta, 53, 5509-5516 (2008). https://doi.org/10.1016/j.electacta.2008.03.009
  12. H. Dennis, 2nd., p. 554-560, Karen A., Werner Kern, William Andrew, Norwich NY USA (2008).
  13. Wet-Chemical Etching of Silicon, Microchemicals GmbH Home Page.www.microchemicals.eu/technical_information.
  14. E. J. Jang, S. M. Hyun, D. G. Choi, Y. B. Park and H. J. Lee (in Korean) KSME, 7, 51-55 (2007).
  15. J. H. Kang, K. M. Yu, K. W. Koo and S. O. Han (in Korean) KIEE. 60(7), (2011).