DOI QR코드

DOI QR Code

Change of Surface and Electrical Characteristics of Silicon Wafer by Wet Etching(2) - Relationship between Surface Roughness and Electrical Properties -

습식 식각에 의한 실리콘 웨이퍼의 표면 및 전기적 특성변화(2) - 표면거칠기와 전기적 특성의 상관관계 -

  • 김준우 (금오공과대학교 신소재시스템공학부) ;
  • 강동수 (금오공과대학교 신소재시스템공학부) ;
  • 이현용 (금오공과대학교 신소재시스템공학부) ;
  • 이상현 ((주)eCONY) ;
  • 고성우 ((주)eCONY) ;
  • 노재승 (금오공과대학교 신소재시스템공학부)
  • Received : 2013.03.19
  • Accepted : 2013.06.11
  • Published : 2013.06.27

Abstract

The relationship the between electrical properties and surface roughness (Ra) of a wet-etched silicon wafer were studied. Ra was measured by an alpha-step process and atomic force microscopy (AFM) while varying the measuring range $10{\times}10$, $40{\times}40$, and $1000{\times}1000{\mu}m$. The resistivity was measured by assessing the surface resistance using a four-point probe method. The relationship between the resistivity and Ra was explained in terms of the surface roughness. The minimum error value between the experimental and theoretical resistivities was 4.23% when the Ra was in a range of $10{\times}10{\mu}m$ according to AFM measurement. The maximum error value was 14.09% when the Ra was in a range of $40{\times}40{\mu}m$ according to AFM measurement. Thus, the resistivity could be estimated when the Ra was in a narrow range.

Keywords

References

  1. B Schwartz and H Robbins, J. Electrochem. Soc, 123(12), 1903-1909 (1976). https://doi.org/10.1149/1.2132721
  2. C. S. Kim and M. W. Park, (in Korean) KSPE, 27(4), 40- 45 (2010).
  3. S. O. Kim, S. H. Lee and J. S. Kwak, (in Korean) KSME, 35(4), 401-407 (2011).
  4. J. Zuecoa and F. Alhamab, J. Quan Spectro & Rad Tran 101(73), (2006).
  5. S. Bellayer, J. W. Gilman, S. S. Rahatekar, S. Bourbigot, X. Flambard, L. M. Hanssen, H. Guo and S. Kumar, Carbon 45(12), 2417-2423 (2007). https://doi.org/10.1016/j.carbon.2007.06.057
  6. S. K. Seo, J. S. Roh, E. S. Kim, S. H. Chi, S. H. Kim and S. W. Lee, Carbon letter, 10(4), 300-304 (2009). https://doi.org/10.5714/CL.2009.10.4.300
  7. E. J. Jang, S. M. Hyun, D. G. Choi, Y. B. Park and H. J. Lee, KSME, 7, 51-55 (2007).
  8. A. Uhlir, JR., Bell Syst. Tech J., 34(1), 105-128, (1954).
  9. L. B. Valdes, Proc Inst Radio Eng. 42(2), 420-427 (1954).
  10. V. F. M. Smits, Bell Syst. Tech. J., 37(3), 711-718 (1958). https://doi.org/10.1002/j.1538-7305.1958.tb03883.x
  11. L. J. Swartzendruber, p. 199, NBS technical note, USA (1964).
  12. J. R. Ehrstein, M. C. Crparlom, p.106, NIST, USA (1999).
  13. M. YAMASHITA, JJAP, 42(2), 695-699 (2003).
  14. J. H. Kang, K. M. Yu, K. W. Koo and S. O. Han, KIEE. 60(7), (2011).
  15. C. D. Wen and I. Mudawar, Int. J. Heat. Mass. tran. 49(23,34), 4279-4289 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.037
  16. J. W. Kim, D. S. Kang, H. Y. Lee, S. H. Lee, S. W. Ko and J. S. Roh, MRSK, in press.