DOI QR코드

DOI QR Code

Study of HOMO and LUMO Energy Levels for Spirolactam Ring Moiety Using Electrochemical Approach

  • Kim, Hyungjoo (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Sehoon (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Son, Young-A (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • Received : 2013.05.07
  • Accepted : 2013.06.10
  • Published : 2013.06.27

Abstract

Rhodamine dyes have been studied in various scientific areas due to their excellent photophysical properties. In particular, these rhodamine dyes are one of the most famous fluorophores as signal unit in chemosensor study. This is related to spirolactam ring system in rhodamine dyes. When the spirolactam ring is closed, there is nonfluorescence and colorless. Whereas, ring-opening of the corresponding spirolactam induces strong fluorescence and color. These absorption and emission changes are related to structural changes as well as electron energy potential levels such as HOMO and LUMO values. In this study, two different structures of rhodamine 6G hydrazide depending on the spirolactam ring system were investigated using absorption measurement, electrochemical measurement and computational calculations.

Keywords

References

  1. X. Chen, T. pradhan, F. Wang, J. S. Kim, and J. Yoon, Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives, Chemical Reviews, 112(3), 1910(2012). https://doi.org/10.1021/cr200201z
  2. M. Beija, C. A. M. Afonso, and J. M. G. Martinho, Synthesis and Applications of Rhodamine Derivatives as Fluorescent Probes, Chem. Soc. Rev., 38(8), 2410(2009). https://doi.org/10.1039/b901612k
  3. Y. K. Yang, K. J. Yook, and J. Tae, A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for The Rapid Detection of $Hg^{2+}$ Ions in Aqueous Media, J. Am. Chem. Soc., 127(48), 16760(2005). https://doi.org/10.1021/ja054855t
  4. G. B. Ferreira, E. Hollauer, N. M. Comerlato and J. L. Wardell, An Experimental and Theoretical Study of The Electronic Spectra of Tetraethylammonium [bis(1,3-dithiole-2-thione-4,5-dithiolato) M(III)] and Tetraethylammonium [bis(1,3-dithiole-2-one-4,5-dithiolato) M(III)] (M = Sb or Bi), Spectrochim. Acta Part A, 71(1), 215(2008). https://doi.org/10.1016/j.saa.2007.12.010
  5. C. N. Ramachadran, D. Roy, and N. Sathyamurthy, Host-Guest Interaction in Endohedral Fullerenes, Chem. Physic. Lett., 461, 87(2008). https://doi.org/10.1016/j.cplett.2008.06.073
  6. Y. S. Kim, S. H. Kim, T. K. Kim, and Y. A. Son, Characteristics of HOMO and LUMO Potentials by Altering Substituents: Computational and Electrochemical Determination, Textile Coloration and Finishing, 20(5), 41(2008). https://doi.org/10.5764/TCF.2008.20.5.041
  7. S. P. Wu, T. H. Wang, and S. R. Liu, A Highly Selective Turn-On Fluorescent Chemosensor for Copper(II) Ion, Tetrahedron, 66(51), 9655(2010). https://doi.org/10.1016/j.tet.2010.10.054
  8. Z. Zhang, Y. Zheng, W. Hang, X. Yan, and Y. Zhao, Sensitive and Selective Off-On Rhodamine Hydrazide Fluorescent Chemosensor for Hypochlorous Acid Detection and Bioimaging, Talanta, 85(1), 779(2011). https://doi.org/10.1016/j.talanta.2011.04.078
  9. H. Li, J. Fan, F. Song, H. Zhu, J. Du, S. Sun, and X. Peng, Fluorescent Probes for $Pd^{2+}$ Detection by Allylidene-Hydrazone Ligands with Excellent Selectivity and Large Fluorescence Enhancement, Chem. Eur. J., 16, 12349(2010). https://doi.org/10.1002/chem.201000796
  10. J. S. Bae, S. Y. Gwon, and S. H. Kim, Anthraquinone-Carbamodithiolate Assembly as Selective Chromogenic Chemosensor for $Fe^{3+}$, Textile Coloration and Finishing, 25(1), 13(2013). https://doi.org/10.5764/TCF.2013.25.1.13
  11. Y. Xiang, A. Tong, P. Jin, and Y. Ju, New Fluorescent Rhodamine Hydrazone Chemosensors for Cu(II) with High Selectivity and Sensitivity, Organic Letters, 8(13), 2863(2006). https://doi.org/10.1021/ol0610340
  12. H. S. Lee and J. H. Kim, Measurement of Physical Properties of Conducting Polymers, Polymer Sci. Technol., 18, 488(2007).
  13. Y. S. Kim, J. I. Shin, S. Y. Park, K. Jun, and Y. A. Son, Electrochemical Studies on Heptamethine Cyanine Dyes, Textile Coloration and Finishing, 21(5), 35(2009). https://doi.org/10.5764/TCF.2009.21.5.035
  14. B. Delley, An All-Electron Numerical Method for Solving The Local Density Functional for Polyatomic Molecules, J. Chem. Phys., 92(1), 508(1990). https://doi.org/10.1063/1.458452
  15. B. Delley, From Molecules to Solids with the $DMol^3$ Approach, J. Chem. Phys., 113(18), 7756 (2000). https://doi.org/10.1063/1.1316015
  16. A. D. Boese and N. C. Handy, A New Parametrization of Exchange-Correlation Generalized Gradient Approximation Functionals, J. Chem. Phys., 114(13), 5497(2001). https://doi.org/10.1063/1.1347371