DOI QR코드

DOI QR Code

Recycling and Applications of Titanium Alloy Scraps

티타늄 합금 스크랩의 재활용 및 응용 기술 현황

  • Oh, Jung-Min (Mineral Resource Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kwon, Hanjung (Mineral Resource Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lim, Jae-Won (Mineral Resource Research Division, Korea Institute of Geoscience & Mineral Resources)
  • 오정민 (한국지질자원연구원 광물자원연구본부) ;
  • 권한중 (한국지질자원연구원 광물자원연구본부) ;
  • 임재원 (한국지질자원연구원 광물자원연구본부)
  • Received : 2013.05.09
  • Accepted : 2013.05.30
  • Published : 2013.06.28

Abstract

In the present paper, we review recycling and applications of titanium binary alloy scraps. The recycling techniques are to successfully prepare low oxygen content ingots using hydrogen plasma arc melting (HPAM) and to produce low oxygen content titanium alloy powders by Hydrogenation-dehydrogenation (HDH) and Deoxidation in solid state (DOSS) process. In addition, as applications of the titanium binary alloy scraps, Ti based solid-solution carbide powders, which would be used for producing Ti based solid-solution cermets with high toughness, were prepared using the titanium binary alloy scraps. These results confirmed that the titanium alloy scraps could be recycled and refined using the HPAM. The resulting oxygen content of the titanium alloy powders were below 1,000 ppm after powderizing. Finally, we had confirmed that the refined titanium alloy powders were able to be utilized as raw materials for preparing the toughened cermets.

본 총설에서는 이원계 티타늄 합금 스크랩을 재활용하기 위해 수소 플라즈마 아크 용해를 이용하여 잉곳을 제조하고, 수소화-탈수소화법과 고상탈산 공정을 통해 저산소 합금 분말을 제조하는 기술에 대하여 소개하고자 한다. 이에 더해, 이원계 티타늄 합금 스크랩을 이용하여 고용상 서메트용 탄화물 분말을 제조하는 응용 분야에 대해서도 소개하고자 한다. 이원계 티타늄 합금 스크랩은 수소 플라즈마 아크 용해를 통해 건전한 잉곳의 제조가 가능함을 확인하였고, 최종적으로 제조된 티타늄 합금 분말의 산소함량은 1,000 ppm 이하였으며, 이를 고용상 서메트용 탄화물 분말의 제조에 응용이 가능함을 확인하였다.

Keywords

References

  1. http://stat.kita.net/top/state/main.jsp?menuId=01&subUrl=n_default-test_kita.jsp?lang_gbn=kor&statid=kts&top_menu_id=db11
  2. Oh, J. M., Lee, B. G., Cho, S. W., Lee, S. W., Choi, G. S., and Lim, J. W., "Oxygen Effects on the Mechanical Properties and Lattice Strain of Ti and Ti-6Al-4V," Met. Mater. Int., 17, 733-736 (2011). https://doi.org/10.1007/s12540-011-1006-2
  3. Lutjering, G., and Williams, J. C., Titanium, Springer, Berlin, 2003, pp. 34-35.
  4. Norgate, T. E, Jahanshahi, S., and Rankin, W. J., "Assessing the Environmental Impact of Metal Production Processes," J. Clean. Prod., 15, 838-848 (2007). https://doi.org/10.1016/j.jclepro.2006.06.018
  5. Reitz, J., Lochbichler, C., and Friedrich, B., "Recycling of Gamma Titanium Aluminide Scrap from Investment Casting Operations," Intermetallics, 19, 762-768 (2011). https://doi.org/10.1016/j.intermet.2010.11.015
  6. Stocks, C., Wood, J., and Guy, S., "Minimisation and Recycling of Spent Acid Wastes from Galvanizing Plants," Resour. Conserv. Recycl., 44, 153-166 (2005). https://doi.org/10.1016/j.resconrec.2004.11.005
  7. Zheng, H., and Okabe, T. H., "Recovery of Titanium Metal Scrap by Utilizing Chloride Wastes," J. Alloys Compds., 461, 459-466 (2008). https://doi.org/10.1016/j.jallcom.2007.07.025
  8. Vutova, K., Vassileva, V., Koleva, E., Georgieva, E., Mladenov, G., Mollov, D., and Kardjiev, M., "Investigation of Electron Beam Melting and Refining of Titanium and Tantalum Scrap," J. Mater. Proc. Technol., 210, 1089-1094 (2010). https://doi.org/10.1016/j.jmatprotec.2010.02.020
  9. Burkhard, R., Hoffelner, W., and Eschenbach, R. C., "Recycling of Metals from Waste with Thermal Plasma," Resour. Conserv. Recycl., 10, 11-16 (1994). https://doi.org/10.1016/0921-3449(94)90033-7
  10. Oh, J. M., Lee, B. K., Choi, G. S., and Lim, J. W., "Preparation and Oxygen Control of Ti-6Al-4V Alloys by Recycling Dental Pure Ti Scraps," JKIRR, 21, 60-65 (2012).
  11. Oh, J. M., and Lim, J. W., "Recycling of Ti Turning Scraps for Production of Consumable Arc Electrode," JKIRR, 21, 58-64 (2012). https://doi.org/10.7844/kirr.2012.21.5.58
  12. Choi, J. C., Chang, S. H., Cha, Y. H., and Oh, I. H., "Technology of High Purity Powder Sintering by Ti Scrap Recycling," Korean J. Mater. Res., 19, 397-402 (2009). https://doi.org/10.3740/MRSK.2009.19.7.397
  13. Lu, X., Hiraki, T., Nakajima, K., Takeda, O., Matsuabe, K., Zhu, H. M., Nakamura, S., and Nagasaka, T., "Thermodynamic Analysis of Separation of Alloying Elements in Recycling of End-of-Life Titanium Products," Sep. Purif. Technol., 89, 135-141 (2012). https://doi.org/10.1016/j.seppur.2012.01.008
  14. Rastkar, A. R., and Shokri, B., "Surface Transformation of Ti-45Al-2Nb-2Mn-1B Titanium Aluminide by Electron Beam Melting," Surf. Coat. Technol., 204, 1817-1822 (2010). https://doi.org/10.1016/j.surfcoat.2009.11.019
  15. Mimura, K., Lim, J. W., Oh, J. M., Choi, G. S., Cho, S. W., Uchikoshi, M., and Isshiki, M., "Refining Effect of Hydrogen Plasma Arc Melting on Titanium Sponges," Mater. Lett., 64, 411-414 (2010). https://doi.org/10.1016/j.matlet.2009.11.033
  16. Lim, J. W., Mimura, K., Miyawaki, D., Oh, J. M., Choi, G. S., Kim, S. B., Uchikoshi, M., and Isshiki, M., "Hydrogen Effect on Refining of Mo Metal by Ar-$H_2$ Plasma Arc Melting," Mater. Lett., 64, 2290-2292 (2010). https://doi.org/10.1016/j.matlet.2010.07.067
  17. Lim, J. W., Choi, G. S., Mimura, K., and Isshiki, M., "Purity Evaluation of Ta Metal Refined by Ar/Ar-$H_2$ Plasma Arc Melting," Met. Mater. Int., 14, 539-543 (2008). https://doi.org/10.3365/met.mat.2008.08.539
  18. Elanski, D., Lim, J. W., Mimura, K., and Isshiki, M., "Thermodynamic Estimation of Hydride Formation during Hydrogen Plasma Arc Melting," J. Alloys Compds., 439, 210-214 (2007). https://doi.org/10.1016/j.jallcom.2006.04.076
  19. Fujita, T., Ogawa, A., Ouchi, C., and Tajima, H., "Microstructure and Properties of Titanium Alloy Produced in The Newly Developed Blended Elemental Powder Metallurgy Process," Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process, 213, 148-153 (1996). https://doi.org/10.1016/0921-5093(96)10232-X
  20. Oh, J. M., Lee, B. K., Suh, C. Y., Cho, S. W., and Lim, J. W., "Preparation Method of Ti Powder with Oxygen Concentration of <1000 ppm using Ca," Powder Metall., 55, 402-404 (2012). https://doi.org/10.1179/1743290112Y.0000000013
  21. Setoyama, D., Matsunaga, J., Muta, H., Uno, M., and Yamanaka, S., "Characteristics of Titanium-Hydrogen Solid Solution," J. Alloys Compds., 385, 156-159 (2004). https://doi.org/10.1016/j.jallcom.2004.04.132
  22. McColm, I. J., and Clark, N. J., High Performance Ceramics, Blackie Press, London, 1986, pp. 129-131.
  23. Suzuki, H., Hayashi, K., and Terada, O., "The Two-Phase Region in TiC-Mo-30%Ni Alloys," J. Jpn. Inst. Met., 35, 146-150 (1971). https://doi.org/10.2320/jinstmet1952.35.2_146
  24. Zhang, S., "Titanium Carbonitride-Based Cermets:Process and Properties," Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process, 163, 141-148 (1997).
  25. Ahn, S. Y., and Kang, S., "Formation of Core/Rim Structures in Ti(C,N)-WC-Ni Cermets via a Dissolution and Precipitation Process," J. Am. Ceram. Soc., 83, 1489-1494 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01415.x
  26. Ahn, S. Y., Kim, S. W., and Kang, S., "Microstructure of Ti(CN)-WC-NbC-Ni Cermets," J. Am. Ceram. Soc., 84, 843- 849 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00750.x
  27. Park, S., and Kang, S., "Toughened Ultrafine (Ti,W)(CN)-Ni Cermets," Scripta Mater., 52, 129-133 (2005). https://doi.org/10.1016/j.scriptamat.2004.09.017
  28. Park, S., and Kang, S., "Synthesis of (Ti,M1,M2)(CN)-Ni Nanocrystalline Powders," Int. J. Refract Met. Hard Mater., 24, 115-121 (2006). https://doi.org/10.1016/j.ijrmhm.2005.05.002
  29. Kwon, H., and Kang, S., "Effect of Milling on the Carbothermal Reduction of Oxide Mixture for (Ti,W)C-Ni," Mater. Trans., 49, 1594-1599 (2008). https://doi.org/10.2320/matertrans.MRA2007267
  30. Kwon, H., and Kang, S., "Microstructure and Mechanical Properties of TiC-WC-(Ti,W)C-Ni Cermets," Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process, 520, 75-79 (2009). https://doi.org/10.1016/j.msea.2009.05.017
  31. Waseda, Y., and Isshiki, M., Purification Process and Characterization of Ultra High Purity Metals, Springer, Tokyo, 2001.
  32. Lalev, G. M., Lim, J. W., Munirathnam, N. R., Choi, G. S., Uchikoshi, M., Mimura, K., and Isshiki, M., "Concentration Behavior of Non-Metallic Impurities in Cu Rods Refined by Argon and Hydrogen Plasma-Arc Zone Melting," Mater. Trans., 50, 618-621 (2009). https://doi.org/10.2320/matertrans.MRA2008205
  33. Liang, C. P., and Gong, H. R., "Fundamental Influence of Hydrogen on Various Properties of ${\alpha}$-Titanium," Int. J. Hydrogen Energy, 35, 3812-3816 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.080
  34. Oh, J. M., Lee, B. K., Suh, C. Y., Cho, S. W., and Lim, J. W., "Deoxidation of Ti Powder and Preparation of Ti Ingot with Low Oxygen Concentration," Mater. Trans., 53, 1075-1077 (2012). https://doi.org/10.2320/matertrans.M2012004
  35. Oh, J. M., Heo, K. H., Kim, W. B., Choi, G. S., and Lim, J. W., "Sintering Properties of Ti-6Al-4V Alloys Prepared Using $Ti/TiH_2$ Powders," Mater. Trans., 54, 119-121 (2013). https://doi.org/10.2320/matertrans.M2012304
  36. Okabe, T. H., Oishi, T., and Ono, K., "Preparation and Characterization of Extra-Low-Oxygen Titanium," J. Alloys Compds., 184, 43-56 (1992). https://doi.org/10.1016/0925-8388(92)90454-H
  37. Wang, B., Liu, K. R., and Chen, J. S., "Reaction Mechanism of Preparation of Titanium by Electro-Deoxidation in Molten Salt," Trans. Nonferrous Met. Soc. China, 21, 2327-2331 (2011). https://doi.org/10.1016/S1003-6326(11)61016-9
  38. Song, M. H., Han, S. M., Min, D. J., Choi, G. S., and Park, J. H., "Diffusion of Oxygen in ${\beta}$-Titanium," Scripta Mater., 59, 623-626 (2008). https://doi.org/10.1016/j.scriptamat.2008.05.037

Cited by

  1. Preparation of Low Oxygen Content Powder from Ti-6Al-4V and Ti-8Al-1Mo-1V Alloy Scraps with Deoxidation in Solid State Process vol.24, pp.1, 2015, https://doi.org/10.7844/kirr.2015.24.1.21
  2. Research on Scrap Recycling of Retired Civil Aircraft vol.657, pp.None, 2021, https://doi.org/10.1088/1755-1315/657/1/012062
  3. 타이타늄 스크랩을 활용한 페로 -타이타늄 전처리 공정 적용 모합금 주조 vol.41, pp.2, 2021, https://doi.org/10.7777/jkfs.2021.41.2.139