DOI QR코드

DOI QR Code

다양한 방법으로 제조된 CuO/CeO2 촉매에서의 벤젠의 연소반응

Complete Combustion of Benzene over CuO/CeO2 Catalysts Prepared by Various Methods

  • Jung, Won Young (Department of Chemical Engineering, Pukyong National University) ;
  • Song, Young In (Department of Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2013.04.30
  • 심사 : 2013.05.28
  • 발행 : 2013.06.28

초록

$CeO_2$에 담지된 구리산화물에서 벤젠의 촉매연소 반응에 대해 연구하였다. 담지된 구리산화물 촉매들은 볼밀법과 함침법으로 제조하였고, XRD, FT-IR, TEM 및 TPR에 의해 특성분석을 하였다. 볼밀법으로 제조된 CuO/$CeO_2$ 촉매는 높은 담지량에서도 잘 분산된 CuO를 얻었다. 볼밀법으로 제조된 CuO/$CeO_2$ 촉매는 함침법으로 제조된 촉매에 비해 높은 활성을 보여주었다. CuO의 담지량이 증가할수록 촉매 활성이 증가하였으며, 10 wt%로 담지된 촉매에서 가장 높은 활성을 나타내었다. 또한, 10 wt% CuO/$CeO_2$ 촉매에 소량의 $Fe_2O_3$와 CoO의 조촉매 첨가는 CuO의 분산도를 높여 반응활성을 증가시켰다.

Catalytic combustion of benzene over $CeO_2$-supported copper oxides has been investigated. The supported copper oxides catalysts were prepared using ball mill method and characterized by XRD, FT-IR, TEM and TPR. In the CuO/$CeO_2$ catalysts prepared using ball mill method, highly dispersed copper oxide species were shown at high loading ratio. The CuO/$CeO_2$ prepared using ball mill method showed the higher activity than those prepared using impregnation method. The catalytic activity increased with an increase in the CuO loading ratio, 10 wt% loaded CuO/$CeO_2$ catalyst giving the highest activity. In addition, the promoting of 10 wt% loaded CuO/$CeO_2$ catalyst with $Fe_2O_3$ and CoO enhanced the dispersion of CuO and then increased the catalytic activity.

키워드

참고문헌

  1. Spivey, J. J., "Complete Catalytic Oxidation of Volatile Organics," Ind. Eng. Chem. Res., 26, 2165-2180 (1987). https://doi.org/10.1021/ie00071a001
  2. Becker, L., and Foster, H., "Oxidative Decomposition of Chlorobenzene Catalyzed by Palladium-containing Zeolite Y," J. Catal., 170, 200-203 (1997). https://doi.org/10.1006/jcat.1997.1740
  3. Jin, L., and Abraham, M. A., "Low-temperature Catalytic Oxidation of 1,4-dichlorobenzene," Ind. Eng. Chem. Res., 30, 89-95 (1991). https://doi.org/10.1021/ie00049a013
  4. Jung W. Y., and Hong S. S., "Catalytic Combustion of Benzene over Perovskite-type Oxides Prepared Using Malic Acid Method," Clean Tech., 18(3), 259-264 (2012). https://doi.org/10.7464/ksct.2012.18.3.259
  5. Wang, J. B., Tsai, D. H., and Huang, T. J., "Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-doped Ceria," J. Catal., 208, 370-380 (2002). https://doi.org/10.1006/jcat.2002.3580
  6. Liu, W., and Flytzani-Stephanopoulos, M., "Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: I. Catalyst Composition and Activity," J. Catal., 153, 304-316 (1995). https://doi.org/10.1006/jcat.1995.1132
  7. Knauth, P., Schwitzgebek, G., Tschope, A., and Villain, S., "Emf Measurements on Nanocrystalline Copper-doped Ceria," J. Solid State Chem., 140, 295-299 (1998). https://doi.org/10.1006/jssc.1998.7890
  8. Ghuge, K. D., Bhat, A. N., and Babu, G. P., "Identification of Nickel Species and Their Interaction with the Support in Ni-silica Catalyst Precursor," Appl. Catal. A: Gen., 103, 183-204 (1993). https://doi.org/10.1016/0926-860X(93)85051-P
  9. Martin, G. A., and Dalmon, J. A., "Benzene Hydrogenation over Nickel Catalysts at Low and High Temperatures: Structure-sensitivity and Copper Alloying Effects," J. Catal., 75, 233-242 (1982). https://doi.org/10.1016/0021-9517(82)90205-6
  10. Yang, J. S., Jung, W. Y., Lee, G. D., Park, S. S., Jeong, E. D., Kim, H. G., and Hong, S. S., "Catalytic Combustion of Benzene over Metal Oxides Supported on SBA-15," J. Ind. Eng. Chem., 14, 779-784 (2008). https://doi.org/10.1016/j.jiec.2008.05.008
  11. Lee, G. H., Lee, M. S., Lee, G. D., Kim, Y. H., and Hong, S. S., "Catalytic Combustion of Benzene over Copper Oxide Supported on $TiO_2$ Prepared by Sol-gel Method," J. Ind. Eng. Chem., 8, 572-577 (2002).
  12. Gervasini, A., and Bennici, S., "Dispersion and Surface States of Copper Catalysts by Temperature-programmed reduction of Oxidized Surfaces (s-TPR)," Appl. Catal. A: Gen., 281, 199-205 (2005). https://doi.org/10.1016/j.apcata.2004.11.030
  13. Cullity, B. D., Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, Reading, 1978, pp. 102.
  14. Dow, W., Wang, Y., and Huang, V., "Yttria-stabilized Zirconia Supported Copper Oxide Catalyst: I. Effect of Oxygen Vacancy of Support on Copper Oxide Reduction," J. Catal., 160, 155-170 (1996). https://doi.org/10.1006/jcat.1996.0135
  15. Berger, J., and Roth, J. F., "Copper Oxide Supported on Alumina II Electron Spin Resonance Studies of Highly Dispersed Phases," J. Phys. Chem., 71, 4307-4315 (1967). https://doi.org/10.1021/j100872a023
  16. Deen, R., Scheltus, P. I. T., and de Vries, G. J., "Electron Paramagnetic Resonance of Supported Copper Oxide Catalyst in the Reduction of Nitric Oxide," J. Catal., 41, 218-226 (1976). https://doi.org/10.1016/0021-9517(76)90337-7
  17. Deraz, N. M., "Characterization and Catalytic Performance of Pure and $Li_2O$-doped CuO/$CeO_2$ Catalysts," Appl. Surf. Sci., 255, 3884-3890 (2009). https://doi.org/10.1016/j.apsusc.2008.10.068
  18. Gallardo-Amores, J. M., Armaroli, T., Ramis, R., Finocchio, E., and Busca, G., "A Study of Anatase-supported Mn Oxide as Catalysts for 2-Propanol Oxidation," Appl. Catal. B: Environ., 22, 249-259 (1999). https://doi.org/10.1016/S0926-3373(99)00055-7
  19. Sirichaipraserta, K., Luengnaruemitchaib, A., and Pongstabodeea, S., "Selective Oxidation of CO to $CO_2$ over Cu-Ce-Fe-O Composite-oxide Catalyst in Hydrogen Feed Stream," Int. J. Hydro. Energy, 32, 915-926 (2007). https://doi.org/10.1016/j.ijhydene.2006.10.060
  20. Avgouropoulos G., and Ioannides T., "Selective CO Oxidation over CuO-$CeO_2$ Catalysts Prepared via the Urea-nitrate Combustion Method," Appl. Catal. A: Gen., 244, 155-167 (2003). https://doi.org/10.1016/S0926-860X(02)00558-6

피인용 문헌

  1. Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides vol.20, pp.4, 2014, https://doi.org/10.7464/ksct.2014.20.4.375
  2. Catalytic Combustion of Benzene over CuO-CeO2Mixed Oxides Prepared by Co-precipitation Method vol.25, pp.3, 2014, https://doi.org/10.14478/ace.2014.1036