DOI QR코드

DOI QR Code

Ginseng saponins and the treatment of osteoporosis: mini literature review

  • Siddiqi, Muhammad Hanif (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Siddiqi, Muhammad Zubair (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Ahn, Sungeun (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kang, Sera (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Yeon-Ju (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Sathishkumar, Natarajan (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Dong-Uk (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center & Ginseng Genetic Resource Bank, Kyung Hee University)
  • Received : 2012.07.03
  • Accepted : 2012.12.05
  • Published : 2013.07.15

Abstract

The ginseng plant (Panax ginseng Meyer) has a large number of active ingredients including steroidal saponins with a dammarane skeleton as well as protopanaxadiol and protopanaxatriol, commonly known as ginsenosides, which have antioxidant, anticancer, antidiabetic, anti-adipocyte, and sexual enhancing effects. Though several discoveries have demonstrated that ginseng saponins (ginsenosides) as the most important therapeutic agent for the treatment of osteoporosis, yet the molecular mechanism of its active metabolites is unknown. In this review, we summarize the evidence supporting the therapeutic properties of ginsenosides both in vivo and in vitro, with an emphasis on the different molecular agents comprising receptor activator of nuclear factor kappa-B ligand, receptor activator of nuclear factor kappa-B, and matrix metallopeptidase-9, as well as the bone morphogenetic protein-2 and Smad signaling pathways.

Keywords

References

  1. Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 2002;20:795-823. https://doi.org/10.1146/annurev.immunol.20.100301.064753
  2. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423:337-342 https://doi.org/10.1038/nature01658
  3. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002;2:389-406. https://doi.org/10.1016/S1534-5807(02)00157-0
  4. Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009;19:1-46. https://doi.org/10.1615/CritRevEukarGeneExpr.v19.i1.10
  5. Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 2007;12:3068-3092 https://doi.org/10.2741/2296
  6. Kogianni G, Noble BS. The biology of osteocytes. Curr Osteoporos Rep 2007;5:81-86. https://doi.org/10.1007/s11914-007-0007-z
  7. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005;115:3318-3325 https://doi.org/10.1172/JCI27071
  8. Ng KW. Future developments in osteoporosis therapy. Endocr Metab Immune Disord Drug Targets 2009;9:371-384. https://doi.org/10.2174/187153009789839192
  9. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994;843:1-129.
  10. National Osteoporosis Foundation. Learn about osteoporosis. Available from: http://www.nof.org/node/40.
  11. World Health Organization. WHO scientific group on the assessment of osteoporosis at primary health care level. Available from: http://www.who.int/chp/topics/Osteoporosis.pdf.
  12. Lau RY, Guo X. A review on current osteoporosis research: with special focus on disuse bone loss. J Osteoporos 2011;2011:293808.
  13. Narducci P, Nicolin V. Differentiation of activated monocytes into osteoclast-like cells on a hydroxyapatite substrate: an in vitro study. Ann Anat 2009;191:349-355. https://doi.org/10.1016/j.aanat.2009.02.009
  14. Baron R, Neff L, Vignery A. Differentiation and functional characteristics of osteoclasts. Bone 1985;6:414.
  15. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165-176. https://doi.org/10.1016/S0092-8674(00)81569-X
  16. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309-319. https://doi.org/10.1016/S0092-8674(00)80209-3
  17. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 1998;95:3597-3602. https://doi.org/10.1073/pnas.95.7.3597
  18. Du J, Cheng B, Zhu X, Ling C. Ginsenoside Rg1, a novel glucocorticoid receptor agonist of plant origin, maintains glucocorticoid efficacy with reduced side effects. J Immunol 2011;187:942-950. https://doi.org/10.4049/jimmunol.1002579
  19. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004;428:758-763. https://doi.org/10.1038/nature02444
  20. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology 2001;142:5050-5055. https://doi.org/10.1210/en.142.12.5050
  21. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 1999;96:3540-3545. https://doi.org/10.1073/pnas.96.7.3540
  22. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999;13:1015-1024. https://doi.org/10.1101/gad.13.8.1015
  23. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 2007;9 Suppl 1:S1.
  24. Sundaram K, Nishimura R, Senn J, Youssef RF, London SD, Reddy SV. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Exp Cell Res 2007;313:168-178. https://doi.org/10.1016/j.yexcr.2006.10.001
  25. Jayakumar P, Di Silvio L. Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 2010;224:1415-1440. https://doi.org/10.1243/09544119JEIM821
  26. Derynck R, Zhang Y. Intracellular signalling: the mad way to do it. Curr Biol 1996;6:1226-1229. https://doi.org/10.1016/S0960-9822(96)00702-6
  27. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8:133-146. https://doi.org/10.1101/gad.8.2.133
  28. Massague J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 1996;85:947-950. https://doi.org/10.1016/S0092-8674(00)81296-9
  29. Reddi AH. Bone and cartilage differentiation. Curr Opin Genet Dev 1994;4:737-744. https://doi.org/10.1016/0959-437X(94)90141-O
  30. Berridge M. Cell signaling biology. Available from: http://www.biochemj.org/csb.
  31. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22:233-241. https://doi.org/10.1080/08977190412331279890
  32. Yamashita H, Ten Dijke P, Heldin CH, Miyazono K. Bone morphogenetic protein receptors. Bone 1996;19:569-574. https://doi.org/10.1016/S8756-3282(96)00259-1
  33. Merck. Fosamax (alendronate sodium) tablets and oral solution prescribing information. Whitehouse Station: Merck, 2011.
  34. Novartis Pharmaceuticals Corporation. Reclast (zoledronic acid) injection prescribing information. East Hanover: Novartis Pharmaceuticals Corporation, 2011.
  35. Wysowski DK. Reports of esophageal cancer with oral bisphosphonate use. N Engl J Med 2009;360:89-90. https://doi.org/10.1056/NEJMc0808738
  36. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 2007;364:1002-1008. https://doi.org/10.1016/j.bbrc.2007.10.125
  37. Kim DY, Park KH, Jung MS, Huang B, Yuan HD, Quan HY, Chung SH. Ginsenoside Rh2(S) induces differentiation and mineralization of MC3T3-E1 cells through activation of the PKD/AMPK signaling pathways. Int J Mol Med 2011;28:753-759.
  38. Liu J, Shiono J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. 20(R)-ginsenoside Rh2, not 20(S), is a selective osteoclastgenesis inhibitor without any cytotoxicity. Bioorg Med Chem Lett 2009;19:3320-3323. https://doi.org/10.1016/j.bmcl.2009.04.054
  39. Cheng B, Li J, Du J, Lv X, Weng L, Ling C. Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-$\kappa$B and MAPKs pathways. Food Chem Toxicol 2012;50:1610-1615. https://doi.org/10.1016/j.fct.2012.02.019
  40. Kim DY, Park YG, Quan HY, Kim SJ, Jung MS, Chung SH. Ginsenoside Rd stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells by activating AMP-activated protein kinase via the BMP-2 signaling pathway. Fitoterapia 2012;83:215-222. https://doi.org/10.1016/j.fitote.2011.10.017
  41. Kim DY, Jung MS, Park YG, Yuan HD, Quan HY, Chung SH. Ginsenoside Rh2(S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways. BMB Rep 2011;44:659-664. https://doi.org/10.5483/BMBRep.2011.44.10.659
  42. He L, Lee J, Jang JH, Lee SH, Nan MH, Oh BC, Lee SG, Kim HH, Soung NK, Ahn JS et al. Ginsenoside Rh2 inhibits osteoclastogenesis through down-regulation of NF-$\kappa$B, NFATc1 and c-Fos. Bone 2012;50:1207-1213. https://doi.org/10.1016/j.bone.2012.03.022
  43. Li XD, Chang B, Chen B, Liu ZY, Liu DX, Wang JS, Hou GQ, Huang DY, Du SX. Panax notoginseng saponins potentiate osteogenesis of bone marrow stromal cells by modulating gap junction intercellular communication activities. Cell Physiol Biochem 2010;26:1081-1092. https://doi.org/10.1159/000323986
  44. Li XD, Liu ZY, Chang B, Liu DX, Chen B, Guo C, Wang YG, Xu JK, Huang DY, Du SX. Panax notoginseng saponins promote osteogenic differentiation of bone marrow stromal cells through the ERK and P38 MAPK signaling pathways. Cell Physiol Biochem 2011;28:367-376. https://doi.org/10.1159/000331753
  45. Gong YS, Chen J, Zhang QZ, Zhang JT. Effect of 17beta-oestradiol and ginsenoside on osteoporosis in ovariectomised rats. J Asian Nat Prod Res 2006;8:649-656. https://doi.org/10.1080/10286020500246063
  46. Monroe DG, Hawse JR, Subramaniam M, Spelsberg TC. Retinoblastoma binding protein-1 (RBP1) is a Runx2 coactivator and promotes osteoblastic differentiation. BMC Musculoskelet Disord 2010;11:104. https://doi.org/10.1186/1471-2474-11-104
  47. Kim KS, Pyo SK, Sohn EH. Immunomodulation of NK cell activity by red ginseng acidic polysaccharide (RGAP) in ovariectomized rats. J Ginseng Res 2009;33:99-103. https://doi.org/10.5142/JGR.2009.33.2.099
  48. Yovel G, Shakhar K, Ben-Eliyahu S. The effects of sex, menstrual cycle, and oral contraceptives on the number and activity of natural killer cells. Gynecol Oncol 2001;81:254-262. https://doi.org/10.1006/gyno.2001.6153
  49. Kropotov AV, Kolodnyak OL, Koldaev VM. Effects of Siberian ginseng extract and ipriflavone on the development of glucocorticoid-induced osteoporosis. Bull Exp Biol Med 2002;133:252-254. https://doi.org/10.1023/A:1015834717178
  50. Kim HR, Cui Y, Hong SJ, Shin SJ, Kim DS, Kim NM, So SH, Lee SK, Kim EC, Chae SW et al. Effect of ginseng mixture on osteoporosis in ovariectomized rats. Immunopharmacol Immunotoxicol 2008;30:333-345. https://doi.org/10.1080/08923970801949125
  51. Shen Y, Li YQ, Li SP, Ma L, Ding LJ, Ji H. Alleviation of ovariectomy-induced osteoporosis in rats by Panax notoginseng saponins. J Nat Med 2010;64:336-345. https://doi.org/10.1007/s11418-010-0416-7
  52. Li XD, Wang JS, Chang B, Chen B, Guo C, Hou GQ,Huang DY, Du SX. Panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells. J Ethnopharmacol 2011;134:268-274. https://doi.org/10.1016/j.jep.2010.11.075
  53. Brewer L, Williams D, Moore A. Current and future treatment options in osteoporosis. Eur J Clin Pharmacol 2011;67:321-331. https://doi.org/10.1007/s00228-011-0999-2
  54. Yuan HD, Kim JT, Kim SH, Chung SH. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 2012;361:27-39. https://doi.org/10.5142/jgr.2012.36.1.27
  55. Huang KC, Williams WM. The pharmacology of Chinese herbs. Boca Raton: CRC Press, 1999.
  56. Kwak YS, Park JD, Yang JW. Present and its prospect of red ginseng efficacy research. Food Ind Nutr 2003;8:30-37.
  57. Quan LH, Cheng LQ, Kim HB, Kim JH, Son NR, Kim SY, Jin HO, Yang DC. Bioconversion of ginsenoside Rd into compound K by Lactobacillus pentosus DC101 isolated from kimchi. J Ginseng Res 2010; 34:288-295. https://doi.org/10.5142/jgr.2010.34.4.288
  58. Shin HY, Jeong HJ, An HJ, Hong SH, Um JY, Shin TY, Kwon SJ, Jee SY, Seo BI, Shin SS et al. The effect of Panax ginseng on forced immobility time & immune function in mice. Indian J Med Res 2006;124:199-206.
  59. Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother Pharmacol 2007;59:589-601. https://doi.org/10.1007/s00280-006-0300-z
  60. Polan ML, Hochberg RB, Trant AS, Wuh HC. Estrogen bioassay of ginseng extract and ArginMax, a nutritional supplement for the enhancement of female sexual function. J Womens Health (Larchmt) 2004;13:427-430. https://doi.org/10.1089/154099904323087114
  61. Kim NH, Lee HM, Choi CH, Lim SK. Clinical effect of Korean red ginseng on osteoporosis. J Ginseng Res 1998;22:114-121.

Cited by

  1. Effect of saponin on erythrocytes vol.100, pp.1, 2014, https://doi.org/10.1007/s12185-014-1605-z
  2. on Alpha-Adrenergic Receptor of Benign Prostatic Hyperplasia vol.18, pp.4, 2014, https://doi.org/10.5213/inj.2014.18.4.179
  3. Potential Neuroprotective Activity of Ginseng in Parkinson’s Disease: A Review vol.10, pp.1, 2015, https://doi.org/10.1007/s11481-014-9569-6
  4. Panax notoginseng saponins mitigate ovariectomy-induced bone loss and inhibit marrow adiposity in rats vol.22, pp.12, 2015, https://doi.org/10.1097/GME.0000000000000471
  5. Fructus Ligustri Lucidi ethanol extract inhibits osteoclastogenesis in RAW264.7 cells via the RANKL signaling pathway vol.14, pp.5, 2016, https://doi.org/10.3892/mmr.2016.5849
  6. Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model vol.22, pp.1, 2016, https://doi.org/10.3390/molecules22010042
  7. Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model vol.39, pp.12, 2016, https://doi.org/10.14348/molcells.2016.0111
  8. leaves suppress inflammatory - mediators production via blockade of NF-κB activation in macrophages vol.45, pp.2, 2017, https://doi.org/10.1080/21691401.2016.1228661
  9. Evaluation of Saponin Loaded Gellan Gum Hydrogel Scaffold for Cartilage Regeneration vol.26, pp.8, 2018, https://doi.org/10.1007/s13233-018-6094-0
  10. Discovery of novel elongator protein 2 inhibitors by compound library screening using surface plasmon resonance vol.9, pp.3, 2019, https://doi.org/10.1039/C8RA09640F
  11. Chemical diversity of ginseng saponins from Panax ginseng vol.39, pp.4, 2013, https://doi.org/10.1016/j.jgr.2014.12.005
  12. Suppression of MAPKs/NF-κB Activation Induces Intestinal Anti-Inflammatory Action of Ginsenoside Rf in HT-29 and RAW264.7 Cells vol.45, pp.5, 2013, https://doi.org/10.3109/08820139.2016.1168830
  13. An analysis of the combination frequencies of constituent medicinal herbs in prescriptions for the treatment of bone and joint disorder in Korean medicine: determination of a group of candidate prescr vol.6, pp.4, 2017, https://doi.org/10.1016/j.imr.2017.09.001
  14. Quantitative Analysis of Dammarane-type Ginsenosides in Different Ginseng Products vol.24, pp.4, 2013, https://doi.org/10.20307/nps.2018.24.4.229
  15. MicroRNA-100-5p inhibits osteoclastogenesis and bone resorption by regulating fibroblast growth factor 21 vol.43, pp.2, 2019, https://doi.org/10.3892/ijmm.2018.4017
  16. Lanostane-Type Saponins from Vitaliana primuliflora vol.24, pp.8, 2013, https://doi.org/10.3390/molecules24081606
  17. Saponins as modulators of nuclear receptors vol.60, pp.1, 2013, https://doi.org/10.1080/10408398.2018.1514580
  18. Development and Biocompatibility Analysis of NBD Peptide Sustained- Release Microsphere Scaffold Nanoparticle SP-Sr-CaS/NBD vol.17, pp.None, 2020, https://doi.org/10.2174/1567201817999201116154935
  19. 인삼 품종별 뿌리 추출물의 NMDA 수용체 길항 효과 및 진세노사이드 함량 vol.28, pp.1, 2020, https://doi.org/10.7783/kjmcs.2020.28.1.9
  20. Effects of Ginseng Ingestion on Salivary Testosterone and DHEA Levels in Healthy Females: An Exploratory Study vol.12, pp.6, 2013, https://doi.org/10.3390/nu12061582
  21. Different absorption and metabolism of ginsenosides after the administration of total ginsenosides and decoction of Panax ginseng vol.34, pp.13, 2020, https://doi.org/10.1002/rcm.8788
  22. Advances in Saponin Diversity of Panax ginseng vol.25, pp.15, 2013, https://doi.org/10.3390/molecules25153452
  23. Effect of Co-Administration of Panax ginseng and Brassica oleracea on Postmenopausal Osteoporosis in Ovariectomized Mice vol.12, pp.8, 2013, https://doi.org/10.3390/nu12082415
  24. Ginsenoside Rg3 Attenuates Aluminum-Induced Osteoporosis Through Regulation of Oxidative Stress and Bone Metabolism in Rats vol.198, pp.2, 2020, https://doi.org/10.1007/s12011-020-02089-9
  25. Genome-Wide Differential Methylation Profiles from Two Terpene-Rich Medicinal Plant Extracts Administered in Osteoarthritis Rats vol.10, pp.6, 2021, https://doi.org/10.3390/plants10061132
  26. The JAK inhibitor Tofacitinib inhibits structural damage in osteoarthritis by modulating JAK1/TNF-alpha/IL-6 signaling through Mir-149-5p vol.151, pp.None, 2013, https://doi.org/10.1016/j.bone.2021.116024