DOI QR코드

DOI QR Code

Corallococcus와 Myxococcus 속 점액세균 균주들에 의한 항균 물질의 생산

Production of Antimicrobial Substances by Strains of Myxobacteria Corallococcus and Myxococcus

  • 신혜진 (호서대학교 생명공학과 점액세균은행) ;
  • 윤진권 (호서대학교 생명공학과 점액세균은행) ;
  • 안동주 (호서대학교 생명공학과 점액세균은행) ;
  • 조경연 (호서대학교 생명공학과 점액세균은행)
  • Shin, Hyejin (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Youn, Jinkwon (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • An, Dongju (Myxobacteria Bank, Department of Biotechnology, Hoseo University) ;
  • Cho, Kyungyun (Myxobacteria Bank, Department of Biotechnology, Hoseo University)
  • 투고 : 2012.10.29
  • 심사 : 2013.01.03
  • 발행 : 2013.03.28

초록

국내 토양시료에서 분리한 174 Corallococcus 속 균주와 207 Myxococcus 속 균주들의 배양추출물을 제조하고 Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus에 대한 항균 활성을 비교하였다. 항진균 활성을 보이는 균주의 비율은 Corallococcus가 7.5%(174균주 중 13균주)로 51.7%(207균주 중 107균주)를 보인 Myxococcus에 비해 낮았다. 하지만, 항세균 활성을 보인 균주의 비율은 Corallococcus가 12.1%(21균주)로 1%(2균주)를 보인 Myxococcus에 비해 상대적으로 높았다. Corallococcus 균주 중 P. aeruginosa, S. aureus에 모두 활성을 보이는 6 C. coralloides 균주들은 자실체 형성에서는 차이를 보였지만 항세균 활성을 나타내는 배양추출물의 HPLC 크로마토그램은 유사하였는데, 이들이 생산하는 항세균 물질의 생산은 CYS 배지에서 6일 이상 배양할 때 가장 높았다.

We prepared culture extracts of 174 Corallococcus and 207 Myxococcus strains isolated in Korea, and compared their antimicrobial activity against Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus. The percentage of strains showing antifungal activity was lower in Corallococcus (7.5% [13 of the 174 strains]) than in Myxococcus (51.7% [107 of the 207 strains]). However, the percentage of strains exhibiting antibacterial activity was higher in Corallococcus (12.1% [21 strains]) than in Myxococcus (1% [2 strains]). The culture extracts of 6 Corallococcus strains inhibited both P. aeruginosa and S. aureus and displayed similar high-performance liquid chromatography chromatograms, although the shapes of their fruiting bodies were dissimilar. The rate of production of antibacterial substances was the highest when the strains were cultured in CYS medium for more than 6 days.

키워드

참고문헌

  1. Belogurov, G. A., M. N. Vassylyeva, A. Sevostyanova, J. R. Appleman, A. X. Xiang, R. Lira, S. E. Webber, S. Klyuyev, E. Nudler, I. Artsimovitch, and D. G. Vassylyev. 2009. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457: 332-335. https://doi.org/10.1038/nature07510
  2. Dawind, W. 2000. Biology and global distribution of myxobacteria in soil. FEMS Microbiol. Rev. 24: 403-427. https://doi.org/10.1111/j.1574-6976.2000.tb00548.x
  3. Garcia, R., K. Gerth, M. Stadler, I. J. Jr. Dogma, and R. Müller. 2010. Expanded phylogeny of myxobacteria and evidence for cultivation of the 'unculturables'. Mol. Phylogenet. Evol. 57: 878-887. https://doi.org/10.1016/j.ympev.2010.08.028
  4. Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1980. Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales). I. Cultivation, isolation, physico-chemical and biological properties. J. Antibiot. 33: 1474-1479. https://doi.org/10.7164/antibiotics.33.1474
  5. Gerth, K., S. Pradella, O. Perlova, S. Beyer, and R. Müller. 2003. Myxobacteria: proficient producers of novel natural products with carious biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106: 233-253. https://doi.org/10.1016/j.jbiotec.2003.07.015
  6. Gerth, K., W. Trowitzsch, V. Wray, G. Hofle, H. Irschik, and H. Reichenbach. 1982. Pyrrolnitrin from Myxococcus fulvus (Myxobacterales). J. Antibiot. 35: 1101-1103. https://doi.org/10.7164/antibiotics.35.1101
  7. Hagen, D. C., A. P. Bretscher, and D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64: 284-296. https://doi.org/10.1016/0012-1606(78)90079-9
  8. Huntley, S., Y. Zhang, A. Treuner-Lange, S. Kneip, C. W. Sensen, and L. Søgaard-Andersen. 2012. Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259. J. Bacteriol. 194: 3012-3013. https://doi.org/10.1128/JB.00397-12
  9. Hyun, H., J. Chung, H. Lee, J. Youn, C. Lee, D. Kim, and K. Cho. 2009. Isolation of cellulose-degrading myxobacteria Sorangium cellulosum. Korean J. Microbiol. 45: 48-53.
  10. Irschik, H. and H. Reichenbach. 1985. The mechanism of action of myxovalargin A, a peptide antibiotic from Myxococcus fulvus. J. Antibiot. 38: 1237-1245. https://doi.org/10.7164/antibiotics.38.1237
  11. Irschik, H., K. Gerth, T. Kemmer, H. Steinmetz, and H. Reichenbach. 1983. The myxovalargins, new peptide antibiotics from Myxococcus fulvus (Myxobacterales). I. Cultivation, isolation, and some chemical and biological properties. J. Antibiot. 36: 6-12. https://doi.org/10.7164/antibiotics.36.6
  12. Irschik, H., R. Jansen, G. Höfle, K. Gerth, and H. Reichenbach. 1985. The corallopyronins, new inhibitors of bacterial RNA synthesis from myxobacteria. J. Antibiot. 38: 145-152. https://doi.org/10.7164/antibiotics.38.145
  13. Kim, Y. S., W. C. Bae, and S. J. Back. 2003. Bioactive substances from myxobacteria. Korean J. Microbiol. Biotechnol. 31: 1-12.
  14. Park, S., B. Lee, J. Kim, C. Lee, E. Jang, and K. Cho. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Korean J. Microbiol. Biotechnol. 32: 218-223.
  15. Reichenbach, H. 2005. Myxococcales. pp. 1059-1144. In Brenner, D. J., N. R. Krieg, J. T. Staley, and G. M. Garrity (ed.), Bergey's Manual of Systematic Bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI, USA.
  16. Reichenbach, H. and G. Hofle. 1999. Myxobacteria as producers of secondary metabolites. pp. 149-179. In Grabley S. and R. Thiericke (ed.), Drug Discovery from Nature, Springer Verlag, Berlin, Germany.
  17. Reichenbach, H. and M. Dworkin. 1992. The myxobacteria, pp. 3416-3487. In Balows, A., H. G. Trper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. IV, Springer Verlag, New York, USA.
  18. Thierbach, G. and H. Reichenbach. 1981. Myxothiazol, a new antibiotic interfering with respiration. Antimicrob. Agents Chemother. 19: 504-507. https://doi.org/10.1128/AAC.19.4.504
  19. Weissman, K. J. and R. Müller. 2009. A brief tour of myxobacterial secondary metabolism. Bioorg. Med. Chem. 17: 2121- 2136. https://doi.org/10.1016/j.bmc.2008.11.025
  20. Weissman, K. J. and R. Müller. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27: 1276-1295. https://doi.org/10.1039/c001260m
  21. Wenzel, S. C. and R. Muller. 2009. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat. Prod. Rep. 26: 1385-1407. https://doi.org/10.1039/b817073h

피인용 문헌

  1. 점액세균 Myxococcus stipitatus KYC4013에 의한 생리활성물질 생산 vol.42, pp.4, 2013, https://doi.org/10.4014/kjmb.1403.03003
  2. Identification of the Phenalamide Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675 vol.26, pp.9, 2013, https://doi.org/10.4014/jmb.1603.03023
  3. Myxococcus stipitatus DSM 14675의 melithiazol 생합성 유전자 분석 vol.44, pp.3, 2013, https://doi.org/10.4014/mbl.1606.06008
  4. Genetic and Functional Analyses of the DKxanthene Biosynthetic Gene Cluster from Myxococcus stipitatus DSM 14675 vol.28, pp.7, 2013, https://doi.org/10.4014/jmb.1802.02045
  5. Effects of Myxococcus fulvus KYC4048 Metabolites on Breast Cancer Cell Death vol.28, pp.5, 2013, https://doi.org/10.4014/jmb.1711.11003
  6. 점액세균의 이차대사산물 vol.54, pp.3, 2013, https://doi.org/10.7845/kjm.2018.8042
  7. Myxococcus stipitatus의 자실체 형성을 위한 배지 조성 vol.55, pp.2, 2013, https://doi.org/10.7845/kjm.2019.9035
  8. Mutants defective in the production of encapsulin show a tan-phase-locked phenotype in Myxococcus xanthus vol.57, pp.9, 2019, https://doi.org/10.1007/s12275-019-8683-9
  9. Screening of Myxobacteria Carrying Tubulysin Biosynthetic Genes vol.49, pp.1, 2013, https://doi.org/10.48022/mbl.2010.10001
  10. The σ54 system directly regulates bacterial natural product genes vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-84057-4