DOI QR코드

DOI QR Code

생물방제균 Pseudomonas fluorescens 2112의 고추 근권정착능과 Quorum-sensing 기능

Root Colonization and Quorum Sensing of the Antagonistic Bacterium Pseudomonas fluorescens 2112 involved in the Red-pepper Rhizosphere

  • 정병권 (영남대학교 미생물생명공학과) ;
  • 김요환 (영남대학교 미생물생명공학과) ;
  • 김상달 (영남대학교 미생물생명공학과)
  • Jung, Byung-Kwon (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University) ;
  • Kim, Yo-Hwan (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University)
  • 투고 : 2012.10.17
  • 심사 : 2012.11.15
  • 발행 : 2013.03.28

초록

다기능 식물생장촉진근권세균(PGPR)인 P. fluorescens 2112 균주가 고추의 생물방제와 성장촉진에 긍정적인 영향을 주기 위해서는 생물막을 형성하여 근권에 정착하는 colonization이 필수조건이다. 따라서 근권정착능에 주요한 생물막 형성에 필요한 quorum sensing의 신호분자인 AHLs의 생산 유무를 조사한 결과, petri dish bioassay에서 AHLs를 생산하여 푸른색환을 형성하는 것을 확인할 수 있었으며 아울러 P. fluorescens 2112 균주의 생장곡선에서 대수증식기 중반에서 정체기 초반에 가장 많은 AHLs를 생산함을 확인하였다. 또한 탄소길이가 6개인 AHLs를 생산한다는 사실을 TLC bioassay를 통해 확인하였다. 그리고 고추의 뿌리 및 근권토양에서의 정착밀도를 Double layer filter paper와 Ahmad와 Baker 법으로 분석하여 확인하였다. 그 결과, 뿌리 상단과 말단에서 각각 $3{\times}10^5$ CFU/g root와 $8{\times}10^3$ CFU/g root로 확인되었으며, 근권토양에서 균주는 표면으로부터 가까운 1 cm 깊이에서는 $3.5{\times}10^6$ CFU/g soil의 높은 밀도로 존재하였으나, 먼 5 cm 깊이의 근권토양에서는 $1.1{\times}10$ CFU/g soil의 낮은 밀도로 존재하였다. 그리고 주사전자현미경을 통해 고추 뿌리의 표피 및 말단에서 처리한 균주가 생물막 형태의 군집을 형성하는 것을 확인하였다. 결과적으로 P. fluorescens 2112 균주가 AHLs를 생산하여 quorum sensing이 이루어졌으며, 이로 인해 고추의 뿌리에 생물막과 유사한 군집을 형성하여 고밀도로 colonization이 일어났을 것으로 생각된다. 따라서 P. fluorescens 2112 균주의 특징인 다양한 항진균 물질과 auxin을 생산함과 동시에 colonization을 통해 고추의 생육촉진이나 생물방제에 긍정적인 효과를 줄 수 있을 것이다.

Biofilm formation of multifunctional plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens 2112 is necessary for P. fluorescens 2112 to have a positive impact on the rhizosphere of red-pepper. This study investigated whether signal molecules of the quorum sensing AHLs are produced in order to confirm biofilm formative ability. Through the use of Petri dish bioassays a blue circle formed evidence of AHLs. It was confirmed that P. fluorescens 2112 produced six-carbon-chain-long AHLs by TLC bioassay. The bacterial density of P. fluorescens 2112 on the top and bottom of pepper plant roots was estimated as $3{\times}10^5$ and $8{\times}10^3$ CFU/g root, respectively. P. fluorescens 2112 exist more with high-density of $3.5{\times}10^6$ CFU/g soil at a depth of 1 cm but at a low-density of $1.1{\times}10$ CFU/g soil at a depth of 5 cm, from the surface of rhizosphere soil. In addition, biofilm formation of P. fluorescens 2112 on the epidermises and the tips of the red-pepper roots were confirmed visually by SEM. Thus, the production of AHLs by P. fluorescens 2112 brings about quorum sensing signaling and the formation of biofilm on the roots which has a positive effect on economically important crops such as red-pepper by additionally producing a variety of antifungal substances and auxin.

키워드

참고문헌

  1. Ahmand, J. S. and R. Baker. 1987. Rhizosphere competence of Trichoderma harizianum. Phytopathol. 77: 182-189. https://doi.org/10.1094/Phyto-77-182
  2. Brelles-Marino, G. and E. J. Bedmar. 2001. Detection, purification and characterization of quorum-sensing signal molecules in plant-associated bacteria. J. Biotechnol. 91: 197-209. https://doi.org/10.1016/S0168-1656(01)00330-3
  3. Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 318-322.
  4. Egamberdiyeva D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189. https://doi.org/10.1016/j.apsoil.2007.02.005
  5. Fuqua, C., M. R. Parsek, and E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35: 439-468. https://doi.org/10.1146/annurev.genet.35.102401.090913
  6. Khan, A. G. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18: 355-364. https://doi.org/10.1016/j.jtemb.2005.02.006
  7. Kim, J. W., O. H. Choi, J. H. Kang, C. M. Ryu, M. J. Jeong, J. W. Kim, and C. S. Park. 1998. Tracing of some root colonizing Pseudomonas in the rhizosphere using lux gene introduced bacteria. Kor. J. Plant Pathol. 14: 13-18.
  8. Kim, S. D., L. D. L. Fuente, D. M. Weller, and L. S. Thomashow. 2012. Colonizing ability of Pseudomonas fluorescens 2112, among collections of 2,4-Diacetylphloroglucinol-producing Pseudomonas fluorescens spp. in pea rhizosphere. J. Microbiol. Biotechnol. 22: 763-770. https://doi.org/10.4014/jmb.1112.12039
  9. Lee, E. T. and S. D. Kim. 2000. Selection and actifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 28: 334-340.
  10. Lee, E. T. and S. D. Kim. 2001. An antifungal substance, 2,4- Diacetylphloroglucinol, produced from antagonistic bacterium Pseudomonas fluorescens 2112 against phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 29: 37-42.
  11. Lee, E. T., S. K. Lim, D. H. Nam, Y. H. Khang, and S. D. Kim. 2003. Pyoverdin2112 of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus. J. Microbiol. Biotechnol. 13: 415-421.
  12. Lim, J. H., H. Y. Jung, and S. D. Kim. 2009. Development of the microbial corsortium for the environmental friendly agriculture by the antagonistic rhizobacteria. J. Appl. Biol. Chem. 52: 116-120. https://doi.org/10.3839/jabc.2009.020
  13. Newton, J. A. and R. G. Fray. 2004. Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol. 6: 213-224. https://doi.org/10.1111/j.1462-5822.2004.00362.x
  14. Park, J. H., I. G. Hwang, J. W. Kim, S. O. Lee, B. Conway, E. P. Greenberg, and K. Lee. 2001. Characterization of quorumsensing signaling molecules produced by Burkholderia cepacia G4. J. Microbiol. Biotechnol. 11: 804-811.
  15. Rad, U. V., I. Klein, P. I. Dobrev, J. Kottova, E. Zazimalova, A. Fekete, A. Hartmann, P. Schmitt-Kopplin, and J. Durner. 2008. Response of Arabidopsis thaliana to N-hexaonyl-DL-homoserine lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229: 73-85. https://doi.org/10.1007/s00425-008-0811-4
  16. Ramey, B. E., M. Koutsoudis, S. B. von Bodman, and C. Fuqua. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Mircobiol. 7: 602-609. https://doi.org/10.1016/j.mib.2004.10.014
  17. Rosser, B. T., P. A. Taylor, P. A. Cix, and R. Cluland. 1987. Methods for evaluating antibiotics on bacterial biofilms. Antimicrob. Agents Chemother. 31: 1502-1506. https://doi.org/10.1128/AAC.31.10.1502
  18. Sahu, S. K., K. K. Patnaik, M. Sharmila, and N. Sethunathan. 1990. Degradation of alpha-, beta-, and gamma-hexachlorocyclohexane by soil bacterium under aerobic conditions. Appl. Environ. Microbiol. 56: 3620-3622.
  19. Sharma, A., M. Sahgal, and B. N. Johri. 2003. Microbial communication in the rhizosphere: Operation of quorum sensing. Curr. Sci. 85: 1164-1172.
  20. Smith, R. S. and B. H. Iglewski. 2003. P. aeruginosa quorumsensing systems and virulence. Curr. Opin. Microbiol. 6: 56-60. https://doi.org/10.1016/S1369-5274(03)00008-0
  21. Tsavkelova, E. A., T. A. Cherdyntseva, S. G. Botina, and A. I. Netrusov. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol. Res. 162: 69-76. https://doi.org/10.1016/j.micres.2006.07.014
  22. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487
  23. Yoon, S. S. 2006. Quorum sensing mechanism in bacterial communities and their potential applications. Kor. J. Food Sci. Ani. Resour. 26: 402-409.

피인용 문헌

  1. 유용미생물(Kluyvera sp. CL-2) 처리가 수박의 유리당 함량 및 토양화학성에 미치는 영향 vol.26, pp.4, 2013, https://doi.org/10.11625/kjoa.2018.26.4.677