References
- Bailey SM, Brenneman MA, Halbrook J, et al (2004). The kinase activity of DNA-PK is required to protect mammalian telomeres. DNA Repair, 3, 225-33. https://doi.org/10.1016/j.dnarep.2003.10.013
- Bailey SM, Meyne J, Chen DJ, et al (1999). DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci USA, 96, 14899-904. https://doi.org/10.1073/pnas.96.26.14899
- Barwell J, Pangon L, Georgiou A, et al (2007). Is telomere length in peripheral blood lymphocytes correlated with cancer susceptibility or radiosensitivity? Br J Cancer, 97, 1696-700. https://doi.org/10.1038/sj.bjc.6604085
- Bianchi A, de Lange T (1999). Ku binds telomeric DNA in vitro. J Biol Chem, 274, 21223-7. https://doi.org/10.1074/jbc.274.30.21223
- Boulton SJ, Jackson SP (1998). Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J, 17, 1819-28. https://doi.org/10.1093/emboj/17.6.1819
- Cawthon RM (2002). Telomere measurement by quantitative PCR. Nucleic Acids Res, 30, e47. https://doi.org/10.1093/nar/30.10.e47
- Chai W, Ford LP, Lenertz L, et al (2002). Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem, 277, 47242-7. https://doi.org/10.1074/jbc.M208542200
- Fink LS, Lerner CA, Torres PF, et al (2010). Ku80 facilitates chromatin binding of the telomere binding protein, TRF2. Cell Cycle, 9, 3798-806. https://doi.org/10.4161/cc.9.18.13129
- Gullo C, Au M, Feng G, et al (2006). The biology of Ku and its potential oncogenic role in cancer. Biochim Biophys Acta, 1765, 223-34.
- Hsu HL, Gilley D, Blackburn EH, et al (1999). Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA, 96, 12454-8. https://doi.org/10.1073/pnas.96.22.12454
- Hsu HL, Gilley D, Galande SA, et al (2000). Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev, 14, 2807-12. https://doi.org/10.1101/gad.844000
- Kim H (2008). DNA repair Ku proteins in gastric cancer cells and pancreatic acinar cells. Amino Acids, 34, 195-202. https://doi.org/10.1007/s00726-006-0411-1
- Lucero H, Gae D, Taccioli GE (2003). Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J Biol Chem, 278, 22136-43. https://doi.org/10.1074/jbc.M301579200
- Nimura Y, Kawata T, Uzawa K, et al (2007). Silencing Ku80 using small interfering RNA enhanced radiation sensitivity in vitro and in vivo. Int J Oncol, 30, 1477-84.
- Polotnianka RM, Li J, Lustig AJ (1998). The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol, 8, 831-4. https://doi.org/10.1016/S0960-9822(98)70325-2
- Samper E, Goytisolo FA, Slijepcevic P, et al (2000). Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep, 1, 244-52. https://doi.org/10.1093/embo-reports/kvd051
- Silver PA, Iglehart JD, Marto JA, et al (2012). DNA ends alter the molecular composition and localization of Ku multicomponent complexes. Mol Cell Proteomics, 11, 411-21. https://doi.org/10.1074/mcp.M111.013581
- Yang QS, Gu JL, Du LQ, et al (2008). ShRNA-mediated Ku80 gene silencing inhibits cell proliferation and sensitizes to gamma-radiation and mitomycin C-induced apoptosis in esophageal squamous cell carcinoma lines. J Radiat Res, 49, 399-407. https://doi.org/10.1269/jrr.07096
- Zhong YH, Liao ZK, Zhou FX, et al (2008). Telomere length inversely correlates with radiosensitivity in human carcinoma cells with the same tissue background. Biochem Biophys Res Commun, 367, 84-9. https://doi.org/10.1016/j.bbrc.2007.12.078
- Zhou FX, Xiong J, Luo ZG, et al (2010). cDNA expression analysis of a human radiosensitive-radioresistant cell line model identifies telomere function as a hallmark of radioresistance. Radiat Res, 174, 550-7. https://doi.org/10.1667/RR1657.1
- Zongaro S, Verri A, Giulotto E, et al (2008). Telomere length and radiosensitivity in human fibroblast clones immortalized by ectopic telomerase expression. Oncol Rep, 19, 1605-9.
Cited by
- Luteolin Arrests Cell Cycling, Induces Apoptosis and Inhibits the JAK/STAT3 Pathway in Human Cholangiocarcinoma Cells vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.5071
- Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells vol.46, pp.3, 2014, https://doi.org/10.3892/ijo.2014.2793
- Shelterin Proteins and Cancer vol.16, pp.8, 2015, https://doi.org/10.7314/APJCP.2015.16.8.3085