DOI QR코드

DOI QR Code

Power and Promise of Ubiquitin Carboxyl-terminal Hydrolase 37 as a Target of Cancer Therapy

  • Chen, Yan-Jie (Department of Gastroenterology, Zhongshan Hospital of Fudan University) ;
  • Ma, Yu-Shui (Department of Gastroenterology, Zhongshan Hospital of Fudan University) ;
  • Fang, Ying (Department of Gastroenterology, Zhongshan Hospital of Fudan University) ;
  • Wang, Yi (Department of Gastroenterology, Zhongshan Hospital of Fudan University) ;
  • Fu, Da (Department of Gastroenterology, Zhongshan Hospital of Fudan University) ;
  • Shen, Xi-Zhong (Department of Gastroenterology, Zhongshan Hospital of Fudan University)
  • Published : 2013.04.30

Abstract

Ubiquitin carboxyl-terminal hydrolase 37 (UCH37, also called UCHL5), a member of the deubiquitinating enzymes, can suppress protein degradation through disassembling polyubiquitin from the distal subunit of the chain. It has been proved that UCH37 can be activated by proteasome ubiqutin chain receptor Rpn13 and incorporation into the 19S complex. UCH37, which has been reported to assist in the mental development of mice, may play an important role in oncogenesis, tumor invasion and migration. Further studies will allow a better understanding of roles in cell physiology and pathology, embryonic development and tumor formation, hopefully providing support for the idea that UCH37 may constitute a new interesting target for the development of anticancer drugs.

Keywords

References

  1. Al-Shami A, Jhaver KG, Vogel P, et al (2010). Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development. PLoS One, 5, e13654. https://doi.org/10.1371/journal.pone.0013654
  2. Baek D, Villen J, Shin C, et al (2008). The impact of microRNAs on protein output. Nature, 455, 64-71. https://doi.org/10.1038/nature07242
  3. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008). The microRNA.org resource: targets and expression. Nucleic Acids Res, 36, D149-53.
  4. Blom N, Gammeltoft S, Brunak S (1999). Sequence and structurebased prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 294, 1351-62. https://doi.org/10.1006/jmbi.1999.3310
  5. Burgie SE, Bingman CA, Soni AB, Phillips GN, Jr. (2011). Structural characterization of human Uch37. Proteins.
  6. Cai Y, Jin J, Yao T, et al (2007). YY1 functions with INO80 to activate transcription. Nat Struct Mol Biol, 14, 872-4. https://doi.org/10.1038/nsmb1276
  7. Chen X, Lee BH, Finley D, Walters KJ (2010). Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol Cell, 38, 404-15. https://doi.org/10.1016/j.molcel.2010.04.019
  8. Chen Y, Fu D, Xi J, et al (2012). Expression and Clinical Significance of UCH37 in Human Esophageal Squamous Cell Carcinoma. Dig Dis Sci, 57, 2310-7. https://doi.org/10.1007/s10620-012-2181-9
  9. Chen Z, Niu X, Li Z, et al (2011). Effect of ubiquitin carboxyterminal hydrolase 37 on apoptotic in A549 cells. Cell Biochem Funct, 29, 142-8. https://doi.org/10.1002/cbf.1734
  10. Chung CH, Baek SH (1999). Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun, 266, 633-40. https://doi.org/10.1006/bbrc.1999.1880
  11. Cutts AJ, Soond SM, Powell S, Chantry A (2011). Early phase TGFbeta receptor signalling dynamics stabilised by the deubiquitinase UCH37 promotes cell migratory responses. Int J Biochem Cell Biol, 43, 604-12. https://doi.org/10.1016/j.biocel.2010.12.018
  12. D'Arcy P, Brnjic S, Olofsson MH, et al (2011). Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med, 17, 1636-40. https://doi.org/10.1038/nm.2536
  13. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994). A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem, 269, 7059-61.
  14. Fang Y, Fu D, Shen XZ (2010). The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta, 1806, 1-6.
  15. Fang Y, Fu D, Tang W, et al (2013). Ubiquitin C-terminal Hydrolase 37, a novel predictor for hepatocellular carcinoma recurrence, promotes cell migration and invasion via interacting and deubiquitinating PRP19. Biochim Biophys Acta, 1833, 559-72. https://doi.org/10.1016/j.bbamcr.2012.11.020
  16. Fang Y, Mu J, Ma Y, et al (2012). The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Mol Cell Biochem, 359, 59-66. https://doi.org/10.1007/s11010-011-0999-7
  17. Friedman RC, Farh KK, Burge CB, Bartel DP (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19, 92-105.
  18. Glickman MH, Ciechanover A (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 82, 373-428.
  19. Goldberg AL (2003). Protein degradation and protection against misfolded or damaged proteins. Nature, 426, 895-9. https://doi.org/10.1038/nature02263
  20. Guterman A, Glickman MH (2004). Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr Protein Pept Sci, 5, 201-11. https://doi.org/10.2174/1389203043379756
  21. Hamazaki J, Iemura S, Natsume T, et al (2006). A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J, 25, 4524-36. https://doi.org/10.1038/sj.emboj.7601338
  22. Hanna J, Hathaway NA, Tone Y, et al (2006). Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell, 127, 99-111. https://doi.org/10.1016/j.cell.2006.07.038
  23. Hershko A and Ciechanover A (1998). The ubiquitin system. Annu Rev Biochem, 67, 425-79. https://doi.org/10.1146/annurev.biochem.67.1.425
  24. Hirohashi Y, Wang Q, Liu Q, et al (2006). p78/MCRS1 forms a complex with centrosomal protein Nde1 and is essential for cell viability. Oncogene, 25, 4937-46. https://doi.org/10.1038/sj.onc.1209500
  25. Holzl H, Kapelari B, Kellermann J, et al (2000). The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J Cell Biol, 150, 119-30. https://doi.org/10.1083/jcb.150.1.119
  26. Husnjak K, Elsasser S, Zhang N, et al (2008). Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature, 453, 481-8. https://doi.org/10.1038/nature06926
  27. Jacobson AD, Zhang NY, Xu P, et al (2009). The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem, 284, 35485-94. https://doi.org/10.1074/jbc.M109.052928
  28. Kapuria V, Peterson LF, Fang D, et al (2010). Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res, 70, 9265-76. https://doi.org/10.1158/0008-5472.CAN-10-1530
  29. Koulich E, Li X, DeMartino GN (2008). Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell, 19, 1072-82.
  30. Lam YA, DeMartino GN, Pickart CM, Cohen RE (1997a). Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. J Biol Chem, 272, 28438-46. https://doi.org/10.1074/jbc.272.45.28438
  31. Lam YA, Xu W, DeMartino GN, Cohen RE (1997b). Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature, 385, 737-40. https://doi.org/10.1038/385737a0
  32. Larkin MA, Blackshields G, Brown NP, et al (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-8. https://doi.org/10.1093/bioinformatics/btm404
  33. Lee BH, Lee MJ, Park S, et al (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature, 467, 179-84. https://doi.org/10.1038/nature09299
  34. Lee MJ, Lee BH, Hanna J, King RW, Finley D (2011). Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics, 10, R110003871 https://doi.org/10.1074/mcp.R110.003871
  35. Li T, Duan W, Yang H, et al (2001). Identification of two proteins, S14 and UIP1, that interact with UCH37. FEBS Lett, 488, 201-5. https://doi.org/10.1016/S0014-5793(00)02436-4
  36. Liu CH, Goldberg AL, Qiu XB (2007). New insights into the role of the ubiquitin-proteasome pathway in the regulation of apoptosis. Chang Gung Med J, 30, 469-79.
  37. Mazumdar T, Gorgun FM, Sha Y, et al (2010). Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc Natl Acad Sci U S A, 107, 13854-9. https://doi.org/10.1073/pnas.0913495107
  38. Nishio K, Kim SW, Kawai K, et al (2009). Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem Biophys Res Commun, 390, 855-60. https://doi.org/10.1016/j.bbrc.2009.10.062
  39. Peth A, Besche HC, Goldberg AL (2009). Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol Cell, 36, 794-804. https://doi.org/10.1016/j.molcel.2009.11.015
  40. Peth A, Kukushkin N, Bosse M, Goldberg AL (2013). Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37. J Biol Chem, 288, 7781-90. https://doi.org/10.1074/jbc.M112.441907
  41. Pickart CM (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem, 70, 503-33. https://doi.org/10.1146/annurev.biochem.70.1.503
  42. Qiu XB, Ouyang SY, Li CJ, et al (2006). hRpn13/ADRM1/ GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J, 25, 5742-53. https://doi.org/10.1038/sj.emboj.7601450
  43. Reese MG (2001). Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem, 26, 51-6. https://doi.org/10.1016/S0097-8485(01)00099-7
  44. Rolen U, Kobzeva V, Gasparjan N, et al (2006). Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol Carcinog, 45, 260-9. https://doi.org/10.1002/mc.20177
  45. Saeki Y, Tanaka K (2008). Cell biology: two hands for degradation. Nature, 453, 460-1. https://doi.org/10.1038/453460a
  46. Schreiner P, Chen X, Husnjak K, et al (2008). Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature, 453, 548-52. https://doi.org/10.1038/nature06924
  47. Stone M, Hartmann-Petersen R, Seeger M, et al (2004). Uch2/ Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J Mol Biol, 344, 697-706. https://doi.org/10.1016/j.jmb.2004.09.057
  48. Sulewska A, Niklinska W, Kozlowski M, et al (2007). DNA methylation in states of cell physiology and pathology. Folia Histochem Cytobiol, 45, 149-58.
  49. The PyMOL Molecular Graphics System: [http://www.pymol.org/citing], Version 1.3, http://www.pymol.org/export.
  50. Verma R, Aravind L, Oania R, et al (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science, 298, 611-5. https://doi.org/10.1126/science.1075898
  51. Wang X (2008). miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA, 14, 1012-7. https://doi.org/10.1261/rna.965408
  52. Wang X, El Naqa IM (2008). Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics, 24, 325-32. https://doi.org/10.1093/bioinformatics/btm595
  53. Wicks SJ, Grocott T, Haros K, et al (2006). Reversible ubiquitination regulates the Smad/TGF-beta signalling pathway. Biochem Soc Trans, 34, 761-3. https://doi.org/10.1042/BST0340761
  54. Wicks SJ, Haros K, Maillard M, et al (2005). The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGFbeta signalling. Oncogene, 24, 8080-4. https://doi.org/10.1038/sj.onc.1208944
  55. Wilkinson KD (1997). Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J, 11, 1245-56.
  56. Wilkinson KD (2002). Cell biology: unchaining the condemned. Nature, 419, 351-3. https://doi.org/10.1038/419351a
  57. Wong YH, Lee TY, Liang HK, et al (2007). KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res, 35, W588-94. https://doi.org/10.1093/nar/gkm322
  58. Yao T, Cohen RE (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature, 419, 403-7. https://doi.org/10.1038/nature01071
  59. Yao T, Song L, Jin J, et al (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell, 31, 909-17. https://doi.org/10.1016/j.molcel.2008.08.027
  60. Yao T, Song L, Xu W, et al (2006). Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol, 8, 994-1002. https://doi.org/10.1038/ncb1460
  61. Zediak VP, Berger SL (2008). Hit and run: transient deubiquitylase activity in a chromatin-remodeling complex. Mol Cell, 31, 773-4. https://doi.org/10.1016/j.molcel.2008.09.005
  62. Zhou ZR, Zhang YH, Liu S, Song AX, Hu HY (2011). Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochem J, 441, 143-9.

Cited by

  1. High expression of UCH37 is significantly associated with poor prognosis in human epithelial ovarian cancer vol.35, pp.11, 2014, https://doi.org/10.1007/s13277-014-2446-3
  2. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications pp.1573-7233, 2017, https://doi.org/10.1007/s10555-017-9702-0
  3. The deubiquitinase UCHL5/UCH37 positively regulates Hedgehog signaling by deubiquitinating Smoothened pp.1759-4685, 2017, https://doi.org/10.1093/jmcb/mjx036
  4. Computational and biochemical studies of isothiocyanates as inhibitors of proteasomal cysteine deubiquitinases in human cancer cells vol.119, pp.11, 2018, https://doi.org/10.1002/jcb.27157
  5. Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition vol.10, pp.17, 2018, https://doi.org/10.4155/fmc-2018-0091