DOI QR코드

DOI QR Code

Numerical Simulation of the Effect of Finite Diaphragm Rupture Process on Micro Shock Tube Flows

Micro shock tube 유동에 대한 유한 격막 파막과정의 영향에 관한 수치 해석적 연구

  • Received : 2012.05.22
  • Accepted : 2013.03.14
  • Published : 2013.06.01

Abstract

Recent years have witnessed the use of micro shock tube in various engineering applications like micro combustion, micro propulsion, particle delivery systems etc. The flow characteristics occurring in the micro shock tube shows a considerable deviation from that of well established conventional macro shock tube due to very low Reynolds number and high Knudsen number effects. Also the diaphragm rupture process, which is considered to be instantaneous process in many of the conventional shock tubes, will be crucial for micro shock tubes in determining the near diaphragm flow field and shock formation. In the present study, an axi-symmetric CFD method has been applied to simulate the micro shock tube, with Maxwell's slip velocity and temperature jump boundary conditions. The effects of finite diaphragm rupture process on the flow field and the shock formation was investigated, in detail. The results show that the shock strength attenuates rapidly as it propagates through micro shock tubes.

최근, micro shock tube는 Micro combustion, Micro propulsion, Particle delivery systems 등과 같은 다양한 공학응용분야에서 사용 되고 있다. Micro shock tube 에서 일어나는 유동 특성은 아주 작은 레이놀즈수 와 높은 누센수의 영향으로 인해 잘 알려진 기존의 macro shock tube 유동 특성과 상당한 차이가 나타난다. 또한 기존의 많은 shock tube의 순간적 과정으로 간주되는 격막파막 과정은 micro shock tube의 격막 근처의 유동장과 충격파 형성을 결정하는 중요한 요인이 될 것이다. 본 논문에서는 micro shock tube를 모사하기 위해 축 대칭, Maxwell's 슬립속도 조건과 온도 변화 경계 조건을 적용하여 수치 해석을 수행 하였다. 또한 유동장과 충격파 형성에 대한 유한 파막 과정의 영향을 자세히 조사 하였고, 결과로부터 충격파 강도는 micro shock tube를 통해 전파됨에 따라 급격히 감소하였다.

Keywords

References

  1. Duff, R. E., "Shock Tube performance at initial low pressure," Physics of Fluids, Vol. 4, 1958, pp.207-216
  2. Brouillette, M., "Shock waves at microscales," Shock Wave, Vol. 13, 2003, pp.3-12 https://doi.org/10.1007/s00193-003-0191-4
  3. Zeitoun, D. E. and Burtschell, Yves., "Navier-Stokes computations in micro shock tubes," Shock Waves, Vol. 15, 2006, pp.241-246 https://doi.org/10.1007/s00193-006-0023-4
  4. Zeitoun, D. E., Burtschell, Yves., Graur, I. A., Ivanov, M. S., Kudryavtsev, A. N., and Bondar, Y. A., "Numerical simulation of shock wave propagation in micro channels using continuum and kinetic approaches," Shock Waves, Vol. 19, 2009, pp.307-316 https://doi.org/10.1007/s00193-009-0202-1
  5. Shigeru, M., Mamun, M., Nakano, S., Srtoguchi, T., and Kim, H. D., "Effect of a diaphragm rupture process on flow characteristics in a shock tube using dry cellophane," International Conference on Mechanical Engineering, 2007
  6. Outa, E., Tajima, K., and Hayakawa, K., "Shock tube flow influenced by diaphragm opening (two-dimensional flow near the diaphragm)," 10th International Symposium on shock waves and Shock Tubes, 1975
  7. Rothkopf, E. M. and Low, W., "Diaphragm opening process in shock tubes," Physics of Fluids, Vol. 17, Issue 6, 1974, pp.1169-1173 https://doi.org/10.1063/1.1694860
  8. Mizoguchi, E. M. and Aso, S., "The effect of diaphragm opening time on the feasibility of tuned operation in free piston shock tunnels," Shock Waves, Vol. 19, 2009, pp.337-347 https://doi.org/10.1007/s00193-009-0214-x
  9. Roy, S. H., Larry, C. F., and James, B. K., "Behavior of burst diaphragm in shock tubes," Physics of Fluids, Vol. 18, Issue 10, 1975, pp.1249-1152 https://doi.org/10.1063/1.861010
  10. Karniadakis, G. E. M. and Beskok, A., Micro Flows fundamentals and Simulation, Springer, Berlin Heidelberg New York, 2000
  11. Fluent user's guide manual, http://www. fluent.com/