DOI QR코드

DOI QR Code

샘플링 기반 민감도를 이용한 국부 유도 가열용 코일의 최적 설계

Optimal Design of Local Induction Heating Coils Based on the Sampling-Based Sensitivity

  • Choi, Nak-Sun (Department of Electrical Eng., Kyungpook National University) ;
  • Kim, Dong-Wook (Department of Electrical Eng., Kyungpook National University) ;
  • Kim, Dong-Hun (Department of Electrical Eng., Kyungpook National University)
  • 투고 : 2013.05.14
  • 심사 : 2013.06.10
  • 발행 : 2013.06.30

초록

본 논문에서는 전자기 결합 문제에 대한 효율적인 최적 설계를 위하여 샘플링 기반 민감도법을 제시하였다. 전자기 해석과 열/구조 해석 사이의 결합 특성에 무관하게 최적해를 도출하기 위하여 블랙박스 개념에 기초한 설계기법이 적용되었다. 현 설계점을 중심으로 초입방체 국부 영역에서 크리깅 근사모델을 생성하고 근사모델의 기저함수의 미분을 통하여 설계민감도 값을 도출하였다. 제안된 설계기법은 샘플링 기반 설계기법과 민감도 기반 설계기법의 장점만을 취한 혼합형 설계기법으로 열/구조 특성과 강성 결합된 전자기 문제의 최적 설계에도 적용이 가능하다. 제안된 방법은 비선형성이 강한 수학 예제 및 과도상태 해석이 요구되는 국부 유도가열용 코일 설계에 적용하여 그 정확성과 타당성을 검증하였다.

This paper proposes a sampling-based sensitivity method for dealing with electromagnetic coupled design problems effectively. The black-box modeling technique is basically applied to obtain an optimum regardless of how strong the electromagnetic, thermal and structural analyses are coupled with each other. To achieve this, Kriging surrogate models are produced in a hyper-cubic local window with the center of a current design point. Then design sensitivity values are extracted from the differentiation of basis functions which consist of the models. The proposed method falls under a hybrid optimization method which takes advantages of the sampling-based and the sensitivity-based methods. Owing to the aforementioned feature, the method can be applied even to electromagnetic problems of which the material properties are strongly coupled with thermal or structural outputs. To examine the accuracy and validity of the proposed method, a strongly nonlinear mathematical example and a coil design problem for local induction heating are tested.

키워드

참고문헌

  1. H. C. Cheng, W. H. Chen, and I. C. Chung, IEEE Trans. Component and Packaging Technologies 27, 359 (2004). https://doi.org/10.1109/TCAPT.2004.828560
  2. K. Y. Hwang, S. B. Rhee, B. Y. Yang, and B. I. Kwon, IEEE Trans. Magn. 43, 1833 (2007). https://doi.org/10.1109/TMAG.2007.892616
  3. E. Gad and M. Nakhla, IEEE Trans. Advanced Packaging 28, 32 (2005). https://doi.org/10.1109/TADVP.2004.841675
  4. Y. Zhang, N. K. Nikolova, and M. K. Meshram, IEEE Trans. Antennas and Propagation 60, 3060 (2012). https://doi.org/10.1109/TAP.2012.2194684
  5. I. Kwak and S. Hahn, IEEE Trans. Magn. 36, 1148 (2000). https://doi.org/10.1109/20.877644
  6. S. Park and J. Yoo, IEEE Trans. Magn. 48, 3883 (2012). https://doi.org/10.1109/TMAG.2012.2195717
  7. D. G. Krige, Master's thesis, University of Witwatersrand (1951).
  8. J. Sacks, S. B. Schiller, and W. J. Welch, Technometrics 31, 41 (1989). https://doi.org/10.1080/00401706.1989.10488474
  9. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Statistical Science 4, 409 (1989). https://doi.org/10.1214/ss/1177012413
  10. I. Lee, K. K. Choi, and L. Zhao, Struct. Multidisc. Optim. 44, 299 (2011). https://doi.org/10.1007/s00158-011-0659-2
  11. Q. Du, V. Faber and M. Gunzburger, SIAM Review 41, 637 (1999). https://doi.org/10.1137/S0036144599352836
  12. http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf.
  13. MagNet/ThermNet User's Manual, Infolytica Corporation, Quebec, Canada (2012).
  14. http://www.upmet.com/products/stainless-steel/304304l-ann/physical.