DOI QR코드

DOI QR Code

A Comparative Study on the Characteristics of Nanofluids to the Shape of Graphene and Carbon Nanotube

그래핀과 탄소나노튜브의 형상에 따른 나노유체의 열전도도 특성 비교 연구

  • Park, Sung-Seek (Nuclear & Energy Engineering, Jeju National University) ;
  • Han, Sang-Pil (Department of Protection and Safety, Sang Gi Young Seo College) ;
  • Jeon, Yong-Han (Department of Protection and Safety, Sang Gi Young Seo College) ;
  • Kim, Jong-Yoon (Department of Fire Safety Management, Seojeong College) ;
  • Kim, Nam-Jin (Nuclear & Energy Engineering, Jeju National University)
  • 박성식 (제주대학교 에너지공학과) ;
  • 한상필 (상지영서대학교 소방안전과) ;
  • 전용한 (상지영서대학교 소방안전과) ;
  • 김종윤 (서정대학교 소방안전관리과) ;
  • 김남진 (제주대학교 에너지공학과)
  • Received : 2013.05.02
  • Accepted : 2013.06.24
  • Published : 2013.06.30

Abstract

Recently, high-thermal-conductivity graphene and carbon nanotube nanoparticles have attracted particularly close attention from researchers. In the present study, the thermal conductivity and viscosity properties of two kinds of graphene and carbon nanotube nanofluids added to distilled water - two graphenes and carbon nanotubes of differing size - were compared and analyzed. The thermal conductivities of the nanofluids, formulated in the usual manner by adding graphene and carbon nanotube to distilled water and subjecting the mixture to ultrasonic dispersion, were measured by the transient hot-wire method, and the viscosities were determined using a rotational digital viscometer. As a result, we concluded that the nanofluid of small particle diameter of graphene have outstanding properties as heat transfer media, due to their excellent thermal conductivity and viscosity, compared with the other nanofluid.

Keywords

References

  1. Das. S. K., Choi. S. U. S., Yu. W., Nanofluids Science and Technology, John Wiley & Sons, Inc., 2008.
  2. Novoselov. K. S. et al., Electric Field Effect in Atomically Thin Carbon Films, Science 306, 666, 2004. https://doi.org/10.1126/science.1102896
  3. Novoselov. K. S. et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438, 197, 2005. https://doi.org/10.1038/nature04233
  4. Geim. A. K. and Kim. P., Carbon wonderland, Scientific American, 298, pp. 90-97, 2008
  5. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., Grulke, E. A., Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letter, Vol. 79, NO. 14, pp. 2252-2254, 2001. https://doi.org/10.1063/1.1408272
  6. Liu, M. S., Lin, M. C., Huang, I. Te., Wang, C. C., "Enhancement of thermal conductivity with carbon nanotube for nanofluids" , International Communications in Heat and Mass Transfer, Vol. 32. No. 9, pp. 1202-1210, 2005. https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005
  7. Baby. T. T. and Ramaprabhu. S., Inverstigation of thermal and electrical conductivity of graphene based nanofluids, Journal of Applied Physics, 108, 124308, 2010. https://doi.org/10.1063/1.3516289
  8. Gupta. S. S. et al., Thermal conductivity enhancement of nanofluids containing graphene nanosheets, Journal of Applied Physics, 110, 084302, 2011. https://doi.org/10.1063/1.3650456
  9. Yu. W., Xie. H., Wang. X., Wang. X., Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Physics Letters, 375, 1323-1328, 2011. https://doi.org/10.1016/j.physleta.2011.01.040
  10. Bently, J. P., Temperature sensor characteristics and measurement system design, Journal of Physics E: Scientific Instruments, 1984, Vol. 17, pp. 430-435. https://doi.org/10.1088/0022-3735/17/6/002
  11. Nagasaka, Y. and Nagashima, A., Absolute Measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method, Journal of Physics E: Scientific Instruments, 1981, Vol. 14, pp. 1435-1440. https://doi.org/10.1088/0022-3735/14/12/020
  12. Kim, N. J., Park, S. S., Lim, S. H., Chun, W. G., A studyon the characteristics of carbon nanofluids at the room temperature, International Communications in Heat and Mass Transfer, Vol. 38, No. 3, pp. 313-318, 2011. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.002
  13. Hamilton. R. L., Crosser. O. K., Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundamen., Vol. 1, p. 187, 1962. https://doi.org/10.1021/i160003a005
  14. Gao. L., Zhou. X. F., Differential effective medium the ory for thermal conductivity in nanofluids, Physics Letters, Vol. 348, pp. 355-360, 2006. https://doi.org/10.1016/j.physleta.2005.08.069

Cited by

  1. 탄소재료가 내첨된 열전도성 복합재의 연구 동향 vol.31, pp.1, 2013, https://doi.org/10.14478/ace.2019.1097
  2. MWCNT가 첨가된 시멘트복합체의 수화 및 전기저항 특성 vol.20, pp.1, 2020, https://doi.org/10.5345/jkibc.2020.20.1.011