Korean J. Math. **21** (2013), No. 2, pp. 101–116 http://dx.doi.org/10.11568/kjm.2013.21.2.101

FUZZY CONNECTIONS AND COMPLETENESS IN COMPLETE RESIDUATED LATTICES

Yong Chan Kim* and Young Sun Kim

ABSTRACT. In this paper, we investigate the properties of fuzzy Galois (dual Galois, residuated, dual residuated) connections in a complete residuated lattice L.

1. Introduction

Galois connection is an important mathematical tool for algebraic structure, data analysis and knowledge processing [1-5,7-11]. Orlowska and Rewitzky [9] investigated the algebraic structures of operators of Galois-style (Galois, dual Galois, residuated, dual residuated) connections on set. Hájek [6] introduced a complete residuated lattice L which is an algebraic structure for many valued logic. Recently, Yao and Lu [11] introduced Galois connections and fuzzy completeness in a complete residuated lattice L. Bělohlávek [1-3] developed the notion of fuzzy contexts using Galois connections with $R \in L^{X \times Y}$ on a complete residuated lattice L.

In this paper, we investigate the properties of fuzzy Galois (dual Galois, residuated, dual residuated) connections as an extension of Yao and Lu [11] in a complete residuated lattice L.

Received February 4, 2013. Revised March 29, 2013. Accepted April 10, 2013. 2010 Mathematics Subject Classification: 06A06, 06A15, 06B30, 54F05,68U35.

Key words and phrases: Fuzzy Galois (dual Galois, residuated, dual residuated) connections, Order preserving (reversing) map, Fuzzy complete.

^{*}Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2013.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

2. Preliminaries

DEFINITION 2.1. ([6,11]) An algebra $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a complete residuated lattice if it satisfies the following conditions:

(C1) $L = (L, \leq, \lor, \land, 1, 0)$ is a complete lattice with the greatest element 1 and the least element 0;

- (C2) $(L, \odot, 1)$ is a commutative monoid;
- (C3) $x \odot y \le z$ iff $x \le y \to z$ for $x, y, z \in L$.

REMARK 2.2. ([6]) (1) A completely distributive lattice $L = (L, \leq , \lor, \land = \odot, \rightarrow, 1, 0)$ is a complete residuated lattice defined by

$$x \to y = \bigvee \{ z \mid x \land z \le y \}.$$

In particular, the unit interval $([0,1], \lor, \land = \odot, \rightarrow, 0, 1)$ is a complete residuated lattice defined by

$$x \to y = \bigvee \{ z \mid x \land z \le y \}.$$

(2) The unit interval $([0,1], \lor, \land, \odot, \rightarrow, 0, 1)$ with a left-continuous tnorm \odot is a complete residuated lattice defined by

$$x \to y = \bigvee \{ z \mid x \odot z \le y \}.$$

In this paper, we assume $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is a complete residuated lattice.

DEFINITION 2.3. ([11]) Let X be a set. A function $e_X : X \times X \to L$ is called:

(E1) reflexive if $e_X(x, x) = 1$ for all $x \in X$,

(E2) transitive if $e_X(x, y) \odot e_X(y, z) \le e_X(x, z)$, for all $x, y, z \in X$.

(E3) if $e_X(x, y) = e_X(y, x) = 1$, then x = y.

If e_X satisfies (E1) and (E2), e_X is a fuzzy preorder and (X, e_X) is a fuzzy preorder set. If e satisfies (E1), (E2) and (E3), e_X is a fuzzy partially order and (X, e_X) is a fuzzy partially order set (simply, fuzzy poset).

EXAMPLE 2.4. (1) We define a function $e_L : L \times L \to L$ as $e_L(x, y) = x \to y$. Then e_L is a partial order.

(2) We define a function $e_{L^X} : L^X \times L^X \to L$ as $e_{L^X}(A, B) = \bigwedge_{x \in X} (A(x) \to B(x))$. Then (L^X, e_{L^X}) is a fuzzy poset.

(3) If (X, e_X) is a fuzzy poset and we define a function $e_X^{-1}(x, y) = e_X(y, x)$, then (X, e_X^{-1}) is a fuzzy poset.

DEFINITION 2.5. Let (X, e_X) and (Y, e_Y) be a fuzzy poset and $f : X \to Y$ and $g : Y \to X$ maps.

(1) (e_X, f, g, e_Y) is called a Galois connection if for all $x \in X, y \in Y$,

$$e_Y(y, f(x)) = e_X(x, g(y)).$$

(2) (e_X, f, g, e_Y) is called a dual Galois connection if for all $x \in X, y \in Y$,

$$e_Y(f(x), y) = e_X(g(y), x).$$

(3) (e_X, f, g, e_Y) is called a residuated connection if for all $x \in X, y \in Y$,

$$e_Y(f(x), y) = e_X(x, g(y)).$$

(4) (e_X, f, g, e_Y) is called a dual residuated connection if for all $x \in X, y \in Y$,

$$e_Y(y, f(x)) = e_X(g(y), x).$$

- (5) f is an order preserving map if $e_Y(f(x_1), f(x_2)) \ge e_X(x_1, x_2)$ for all $x_1, x_2 \in X$.
- (6) f is an order reversing map if $e_Y(f(x_1), f(x_2)) \ge e_X(x_2, x_1)$ for all $x_1, x_2 \in X$.

3. Fuzzy connections and completeness in complete residuated lattices

DEFINITION 3.1. ([10]) Let (X, e_X) be a fuzzy poset and $A \in L^X$.

- (1) A point x_0 is called a join (or supremum) of A, denoted by $x_0 = \sqcup A$, if it satisfies
- $(J1) A(x) \le e_X(x, x_0),$
- (J2) $\bigwedge_{x \in X} (A(x) \to e_X(x, y)) \leq e_X(x_0, y).$ A point x_1 is called a meet (or infimum) of A, denoted by $x_1 = \Box A$, if it satisfies
- (M1) $A(x) \leq e_X(x_1, x),$
- (M2) $\bigwedge_{x \in X} (A(x) \to e_X(y, x)) \leq e_X(y, x_1).$ The pair (X, e_X) is called a fuzzy complete lattice if for all $A \in L^X$, $\sqcup A$ and $\sqcap A$ exist.
 - (2) $x_0 = \max A$ is called a maximal element if $A(x_0) = 1$ and $A(y) \le e_X(y, x_0)$, for all $y \in X$.
 - (3) $x_1 = \min A$ is called a minimal element if $A(x_1) = 1$ and $A(y) \le e_X(x_1, y)$, for all $y \in X$.

REMARK 3.2. Let (X, e_X) be a fuzzy poset and $A \in L^X$. If x_0 is a join of A, then it is unique because $e_X(x_0, y) = e_X(y_0, y)$ for all $y \in X$, put $y = x_0$ or $y = y_0$, then $e_X(x_0, y_0) = e_X(y_0, x_0) = 1$ implies $x_0 = y_0$. Similarly, if a meet of A exist, then it is unique.

THEOREM 3.3. Let (X, e_X) be a fuzzy poset and $A \in L^X$. (1) x_0 is a join of A iff $\bigwedge_{x \in X} (A(x) \to e_X(x, y)) = e_X(x_0, y).$ (2) x_1 is a meet of A iff $\bigwedge_{x \in X} (A(x) \to e_X(y, x)) = e_X(y, x_1).$ (3) $x_0 = \max A \text{ iff } A(x_0) = 1 \text{ and } x_0 = \sqcup A.$

(4) $x_1 = \min A$ iff $A(x_1) = 1$ and $x_1 = \Box A$.

Proof. (1) (\Rightarrow) Let x_0 be a join of A. Then $A(x) \leq e_X(x, x_0)$. Thus, $A(x) \odot e_X(x_0, y) \le e_X(x, x_0) \odot e_X(x_0, y) \le e_X(x, y)$. Hence $e_X(x_0, y) \le e_X(x_0, y)$. $\bigwedge_{x \in X} (A(x) \to e_X(x, y))$. By (J2), the equality holds.

 (\Leftarrow) Since $\bigwedge_{x\in X}(A(x)\to e_X(x,x_0))=e_X(x_0,x_0)=1$, then $A(x)\leq$ $e_X(x, x_0)$. Hence the result holds.

(2) (\Rightarrow) Let x_1 be a meet of A. Then $A(x) \leq e_X(x_1, x)$. Thus, $e_X(y,x_1) \odot A(x) \leq e_X(y,x_1) \odot e_X(x_1,x) \leq e_X(y,x)$. Hence $e_X(y,x_1) \leq e_X(y,x_1) \leq e_X($ $\bigwedge_{x \in X} (A(x) \to e_X(x, y))$. By (M2), the equality holds.

 (\Leftarrow) Since $\bigwedge_{x\in X}(A(x)\to e_X(x_1,x))=e_X(x_1,x_1)=1$, then $A(x)\leq$ $e_X(x_1, x)$. Hence the result holds.

(3) Let $x_0 = \max A$. Then

$$\bigwedge_{z \in X} (A(z) \to e_X(z, x)) \le A(x_0) \to e_X(x_0, x) = e_X(x_0, x),$$

$$\bigwedge_{z \in X} (A(z) \to e_X(z, x)) \ge \bigwedge_{z \in X} (e_X(z, x_0) \to e_X(z, x)) = e_X(x_0, x).$$

Thus $e_X(x_0, x) = \bigwedge_{z \in X} (A(z) \to e_X(z, x))$. So, $x_0 = \sqcup A$.

Let $A(x_0) = 1$ and $x_0 = \sqcup A$. Then $e_X(x_0, x_0) = \bigwedge_{z \in X} (A(z) \to A(z))$ $e_X(z, x_0) = 1$ implies $A(z) \leq e_X(z, x_0)$. Then $x_0 = \max A$.

(4) It is similarly proved as (3).

REMARK 3.4. Let (X, e_X) be a fuzzy poset and $A \in L^X$.

- (1) Since $\bigwedge_{x \in X} (e_X(x, y) \to e_X(x, z)) = e_X(y, z)$, then, by Theorem 3.3 (1), $y = \sqcup (e_X)^y$ where $(e_X)^y(x) = e_X(x, y)$.
- (2) Since $\bigwedge_{z \in X} (e_X(y, z) \to e_X(x, z)) = e_X(x, y)$, then, by Theorem 3.3 (3), $y = \overline{\sqcap}(e_X)_y$ where $(e_X)_y(x) = e_X(y, x)$.

REMARK 3.5. Let (L, e_L) be a fuzzy poset and $A \in L$.

- (1) If x_0 is a join of A, then $\bigwedge_{x \in L} (A(x) \to e_L(x, y)) = \bigwedge_{x \in L} (A(x) \to (x \to y)) = \bigvee_{x \in L} (x \odot A(x)) \to y = e_L(x_0, y) = x_0 \to y$. So, $x_0 = \sqcup A = \bigvee_{x \in L} (x \odot A(x))$.
- (2) If x_1 is a meet of A iff $\bigwedge_{x \in L} (A(x) \to e_L(y, x)) = \bigwedge_{x \in L} (A(x) \to (y \to x)) = y \to \bigwedge_{x \in L} (A(x) \to x) = e_X(y, x_1) = y \to x_1$, then $x_1 = \Box A = \bigwedge_{x \in L} (A(x) \to x)$.

EXAMPLE 3.6. Let $X = \{a, b, c\}$ be a set. Define a binary operation \odot (called Lukasiewicz conjection) on L = [0, 1] by

$$x \odot y = \max\{0, x + y - 1\}, \ x \to y = \min\{1 - x + y, 1\}.$$

Let $(X = \{a, b, c\}, e_X)$ be a fuzzy poset as follows:

$$e_X(a, a) = 1, \ e_X(a, b) = 0.6, \ e_X(a, b) = 0.5$$

 $e_X(b, a) = 0.8, \ e_X(b, b) = 1, \ e_X(b, c) = 0.7$
 $e_X(c, a) = 0.9, \ e_X(c, b) = 0.6, \ e_X(c, c) = 1.$

(1) For
$$A = (e_X)^a = (1, 0.8, 0.9)^t$$
, we have $a = \sqcup A = \max A$ from
 $\bigwedge (A(x) \to e_X(x, z)) = e_X(a, z).$
(2) For $A = (e_X)^b = (0.6, 1, 0.6)^t$, we have $b = \sqcup A = \max A$ from

$$\bigwedge (A(x) \to e_X(x,z)) = e_X(b,z).$$

(3) For $A = (e_X)^c = (0.5, 0.7, 1)^t$, we have $c = \sqcup A$ from $\bigwedge_{x \in X} (A(x) \to e_X(x, y)) = e_X(\sqcup A, y) = e_X(c, y).$

(4) For $A = (e_X)_a = (1, 0.6, 0.5)^t$, we have $a = \Box A = \min A$ from $\bigwedge (A(x) \to e_X(z, x)) = e_X(z, a).$

(5) For $A = (e_X)_b = (0.8, 1, 0.7)^t$, we have $b = \Box A = \min A$ from

$$\bigwedge (A(x) \to e_X(z, x)) = e_X(z, b).$$

(6) For $A = (e_X)_c = (0.9, 0.6, 1)^t$, we have $c = \Box A = \min A$ from $\bigwedge_{x \in X} (A(x) \to e_X(z, x)) = e_X(z, c).$ (7) For $A = (0.5, 0.8, 0.6)^t$, $\Box A$ and $\Box A$ do not exist from:

$$0.9 = \bigwedge (A(x) \to e_X(x,c)) \neq e_X(y,c), \forall y \in \{a,b,c\}$$
$$0.8 = \bigwedge (A(x) \to e_X(a,x)) \neq e_X(a,y), \forall y \in \{a,b,c\}.$$

Hence (X, e_X) is not fuzzy complete.

THEOREM 3.7. Let (X, e_X) and (Y, e_Y) be complete.

- (1) (e_X, f, g, e_Y) is a Galois connection iff f is an order reversing map and $g(y) = \max f^{\leftarrow}((e_Y)_y)$ iff g is an order reversing map and $f(x) = \max g^{\leftarrow}((e_X)_x)$.
- (2) (e_X, f, g, e_Y) is a dual Galois connection iff f is an order reversing map and $g(y) = \min f^{\leftarrow}((e_Y)^y)$ iff g is an order reversing map and $f(x) = \min g^{\leftarrow}((e_X)^x)$.
- (3) (e_X, f, g, e_Y) is a residuated connection iff f is an order preserving map and $g(y) = \max f^{\leftarrow}((e_Y)^y)$ iff g is an order preserving map and $f(x) = \min g^{\leftarrow}((e_X)_x)$.
- (4) (e_X, f, g, e_Y) is a dual residuated connection iff f is an order preserving map and $g(y) = \min f^{\leftarrow}((e_Y)_y)$ iff g is an order preserving map and $f(x) = \max g^{\leftarrow}((e_X)^x)$.

Proof. (1) We only show that (e_X, f, g, e_Y) is a Galois connection iff f is an order reversing map and $g(y) = \max f^{\leftarrow}((e_Y)_y)$ because other case is similarly proved.

 (\Rightarrow) Since $e_X(x, g(f(x))) = e_Y(f(x), f(x)) = 1$, we have

$$e_Y(f(x), f(y)) = e_X(y, g(f(x)))$$

 $\geq e_X(y, x) \odot e_X(x, g(f(x))) = e_X(y, x).$

Hence f is an order reversing map. Moreover, $g(y) = \max f^{\leftarrow}((e_Y)_y)$ because

$$f^{\leftarrow}((e_Y)_y)(g(y)) = (e_Y)_y(f(g(y)))$$

= $e_Y(y, f(g(y)))$
= $e_X(g(y), g(y)) = 1$,
 $f^{\leftarrow}((e_Y)_y)(x) = (e_Y)_y(f(x)) = e_Y(y, f(x)) = e_X(x, g(y)).$
(\Leftarrow) Since $g(y) = \max f^{\leftarrow}((e_Y)_y)$, we have
 $e_Y(y, f(x)) = (e_Y)_y(f(x)) = f^{\leftarrow}((e_Y)_y)(x) \le e_X(x, g(y)).$

Since
$$g(y) = \max f^{\leftarrow}((e_Y)_y),$$

 $f^{\leftarrow}((e_Y)_y)(g(y)) = (e_Y)_y(f(g(y))) = e_Y(y, f(g(y))) = 1.$
 $e_X(x, g(y)) \le e_Y(f(g(y)), f(x)) \odot e_Y(y, f(g(y))) \le e_Y(y, f(x)).$

Thus $e_X(x, g(y)) = e_Y(y, f(x)).$

(2) We only show that (e_X, f, g, e_Y) is a dual Galois connection iff f is an order reversing map and $g(y) = \min f^{\leftarrow}((e_Y)^y)$ because other case is similarly proved.

$$(\Rightarrow) \text{ Since } e_X(g(f(x)), x) = e_Y(f(x), f(x)) = 1, \text{ we have} \\ e_Y(f(x), f(y)) = e_X(g(f(y)), x) \\ \geq e_X(g(f(y)), y) \odot e_X(y, x) = e_X(y, x)$$

Hence f is an order reversing map. Moreover, $g(y) = \min f^{\leftarrow}((e_Y)^y)$ because

$$f^{\leftarrow}((e_{Y})^{y})(g(y)) = (e_{Y})^{y}(f(g(y)))$$

$$= e_{Y}(f(g(y)), y) = e_{X}(g(y), g(y)) = 1$$

$$f^{\leftarrow}((e_{Y})^{y})(x) = (e_{Y})^{y}(f(x)) = e_{Y}(f(x), y) = e_{X}(g(y), x).$$
(\Leftarrow) Since $g(y) = \min f^{\leftarrow}((e_{Y})^{y})$, we have
$$e_{Y}(f(x), y) = (e_{Y})^{y}(f(x)) = f^{\leftarrow}((e_{Y})^{y})(x) \le e_{X}(g(y), x).$$
Since $g(y) = \min f^{\leftarrow}((e_{Y})^{y}),$

$$f^{\leftarrow}((e_{Y})^{y})(g(y)) = (e_{Y})^{y}(f(g(y))) = e_{Y}(f(g(y)), y) = 1.$$

$$e_{X}(g(y), x) \le e_{Y}(f(x), f(g(y))) \odot e_{Y}(f(g(y)), y) \le e_{Y}(f(x), y).$$
Thus, $e_{Y}(f(x), y) = e_{X}(g(y), x).$
(3) It follows from Theorem 3.4 in [11].
(4) First, we show that (e_{X}, f, g, e_{Y}) is a dual residuated connection

iff f is an order preserving map and $g(y) = \min f^{\leftarrow}((e_Y)_y)$. (\Rightarrow) Since $e_X(g(f(x)), x) = e_Y(f(x), f(x)) = 1$, we have

$$e_Y(f(x), f(y)) = e_X(g(f(x)), y)$$

$$\geq e_X(x,y) \odot e_X(g(f(x)),x) = e_X(x,y).$$

We obtain $g(y) = \min f^{\leftarrow}((e_Y)_y)$ because

$$f^{\leftarrow}((e_Y)_y)(g(y)) = (e_Y)_y(f(g(y))) = e_Y(y, f(g(y)))$$

= $e_X(g(y), g(y)) = 1,$
 $f^{\leftarrow}((e_Y)_y)(x) = (e_Y)_y(f(x)) = e_Y(y, f(x))$
= $e_X(g(y), x).$

$$(\Leftarrow) \text{ Since } g(y) = \min f^{\leftarrow}((e_Y)_y), \text{ we have} \\ e_Y(y, f(x)) = (e_Y)_y(f(x)) = f^{\leftarrow}((e_Y)_y)(x) \leq e_Y(g(y), x). \\ \text{Since } g(y) = \min f^{\leftarrow}((e_Y)_y), \\ f^{\leftarrow}((e_Y)_y)(g(y)) = (e_Y)_y(f(g(y))) = e_Y(y, f(g(y))) = 1. \\ e_X(g(y), x) \leq e_Y(f(g(y)), f(x)) \odot e_Y(y, f(g(y))) \leq e_Y(y, f(x)). \\ \text{Hence } e_X(g(y), x) = e_Y(y, f(x)). \\ \text{Second, we show that } (e_X, f, g, e_Y) \text{ is a dual residuated connection iff} \\ g \text{ is an order preserving map and } f(x) = \max g^{\leftarrow}((e_X)^x). \\ (\Rightarrow) \text{ Since } e_Y(y, f(g(y))) = e_X(g(y), g(y)) = 1, \text{ we have} \\ e_X(g(x), g(y)) = e_Y(x, f(g(y))) \geq e_Y(x, y) \odot e_Y(y, g(f(y))) = e_Y(x, y). \\ \text{We obtain } f(x) = \max g^{\leftarrow}((e_X)^x) \text{ because} \\ g^{\leftarrow}((e_X)^x)(f(x)) = (e_X)^x(g(f(x))) = e_X(g(y), x) = e_Y(y, f(x)). \\ = e_Y(f(x), f(x)) = 1, \\ g^{\leftarrow}((e_X)^x)(y) = (e_X)^x(g(y)) = e_X(g(y), x) = e_Y(y, f(x)). \end{cases}$$

 (\Leftarrow) Since $f(x) = \max g^{\leftarrow}((e_X)^x)$, we have

$$e_X(g(y), x) = (e_X)^x(g(y)) = g^{\leftarrow}((e_X)^x)(y) \le e_Y(y, f(x)).$$

Since $f(x) = \max q^{\leftarrow}((e_X)^x)$,

$$g^{\leftarrow}((e_X)^x)(f(x)) = (e_X)^x(g(f(x))) = e_X(g(f(x)), x) = 1.$$

$$e_Y(y, f(x)) \le e_X(g(y), g(f(x))) \odot e_X(g(f(x)), x) \le e_X(g(y), x).$$

Hence $e_X(g(y), x) = e_Y(y, f(x)).$

THEOREM 3.8. Let (X, e_X) and (Y, e_Y) be complete.

- (1) (e_X, f, g, e_Y) is a Galois connection iff $f(\sqcup A) = \sqcap f^{\rightarrow}(A)$ for all
- (1) (e_X, f, g, e_Y) is a Galois connection in f(□A) = +f (A) for all A ∈ L^X iff g(□B) = □g[→](B) for all B ∈ L^Y.
 (2) (e_X, f, g, e_Y) is a dual Galois connection iff f(□A) = □f[→](A) for all A ∈ L^X iff g(□B) = □g[→](B) for all B ∈ L^Y.
 (3) (e_X, f, g, e_Y) is a residuated connection iff f(□A) = □f[→](A) for all A ∈ L^X iff g(□B) = □g[→](B) for all B ∈ L^Y.
 (4) (e_X, f, g, e_Y) is a dual maidwated connection iff f(□A) = □f[→](A) for all A ∈ L^X iff g(□B) = □g[→](B) for all B ∈ L^Y.
- (4) (e_X, f, g, e_Y) is a dual residuated connection iff, for all $A \in L^X$, $f(\Box A) = \Box f^{\rightarrow}(A) \text{ iff } g(\sqcup B) = \sqcup g^{\rightarrow}(B) \text{ for all } B \in L^Y.$

Proof. (1) First, we will show that (e_X, f, g, e_Y) is a Galois connection iff $f(\sqcup A) = \sqcap f^{\rightarrow}(A)$ for all $A \in L^X$. (\Rightarrow) Put $y_0 = \sqcap f^{\rightarrow}(A)$. Then

$$e_Y(y, y_0) = \bigwedge_{z \in Y} (f^{\to}(A)(z) \to e_Y(y, z))$$

$$= \bigwedge_{z \in Y} ((\bigvee_{f(x)=z} A(x) \to e_Y(y, f(x))))$$

$$= \bigwedge_{z \in Y} \bigwedge_{f(x)=z} (A(x) \to e_Y(y, f(x)))$$

$$= \bigwedge_{x \in X} (A(x) \to e_X(x, g(y)))$$

$$= e_X(\sqcup A, g(y)) = e_Y(y, f(\sqcup A)).$$

Hence $y_0 = f(\sqcup A) = \sqcap f^{\rightarrow}(A)$.

 (\Leftarrow) Put $A = (e_X)^y$. Since $\sqcup (e_X)^y = y$ from Remark 3.4(1), we have $f(y) = f(\sqcup (e_X)^y) = \sqcap f^{\rightarrow}((e_X)^y)$. By the definition of $\sqcap f^{\rightarrow}((e_X)^y)$,

$$e_Y(f(y), f(x)) \ge f^{\to}((e_X)^y)(f(x)) = \bigvee_{f(z)=f(x)} (e_X)^y(z) \ge e_X(x, y).$$

Thus, f is order-reversing.

Define $g: Y \to X$ as $g(y) = \sqcup f^{\leftarrow}((e_Y)_y)$. By the definition of $g(y_1) = \sqcup f^{\leftarrow}((e_Y)_{y_1})$, we have

$$e_X(g(y_1), g(y_2)) = \bigwedge_{z \in Y} (f^{\leftarrow}((e_Y)_{y_1})(z) \to e_X(z, g(y_2)))$$

$$\geq \bigwedge_{z \in Y} (f^{\leftarrow}((e_Y)_{y_1})(z) \to f^{\leftarrow}((e_Y)_{y_2})(z))$$

$$= \bigwedge_{z \in Y} (e_Y(y_1, f(z)) \to e_Y(y_2, f(z)))$$

$$\geq e_Y(y_2, y_1).$$

Thus, g is order-reversing. Since

$$f(g(y)) = f(\sqcup f^{\leftarrow}((e_Y)_y)) = \sqcap f^{\rightarrow}(f^{\leftarrow}((e_Y)_y))$$

$$e_Y(y, f(g(y))) = \bigwedge_{z \in Y} (f^{\leftarrow}((e_Y)_y))(z) \to e_Y(y, z))$$

$$= \bigwedge_{z \in Y} (\bigvee_{f(x)=z} (f^{\leftarrow}((e_Y)_y))(z) \to e_Y(y, z))$$

$$= \bigwedge_{z \in Y} (\bigvee_{f(x)=z} e_Y(y, f(x)) \to e_Y(y, z))$$

$$= \bigwedge_{x \in X} (e_Y(y, f(x)) \to e_Y(y, f(x))) = 1.$$

Since
$$g(f(x)) = \sqcup f^{\leftarrow}((e_Y)_{f(x)}),$$

 $e_X(x, g(f(x)) \geq f^{\leftarrow}((e_Y)_{f(x)})(x) = (e_Y)_{f(x)}(f(x)) = 1,$
 $e_X(x, g(y)) \leq e_Y(f(g(y)), f(x)) = e_Y(f(g(y)), f(x))$
 $\odot e_Y(y, f(g(y))) \leq e_Y(y, f(x)),$
 $e_Y(y, f(x)) \leq e_X(g(f(x)), g(y)) = e_X(g(f(x)), g(y))$
 $\odot e_Y(x, g(f(x))) \leq e_X(x, g(y)).$

Thus $e_X(x, g(y)) = e_Y(y, f(x)).$

Second, (e_X, f, g, e_Y) is a Galois connection iff $g(\sqcup B) = \sqcap g^{\rightarrow}(B)$ for all $B \in L^Y$.

 (\Rightarrow) Put $x_0 = \sqcap g^{\rightarrow}(B)$. Then

$$e_X(x, x_0) = \bigwedge_{z \in X} (g^{\rightarrow}(B)(z) \to e_X(x, z))$$

$$= \bigwedge_{z \in X} (\bigvee_{g(y)=z} B(y) \to e_X(x, g(y)))$$

$$= \bigwedge_{z \in X} \bigwedge_{g(y)=z} (B(y) \to e_Y(y, f(x)))$$

$$= \bigwedge_{y \in Y} (B(y) \to e_Y(y, f(x)))$$

$$= e_Y(\sqcup_l B, f(x)) = e_X(x, g(\sqcup_l B)).$$

(⇐) Put $B = (e_Y)^y$. Then $g(y) = g(\sqcup(e_Y)^y) = \sqcap g^{\rightarrow}((e_Y)^y)$. By the definition of $\sqcap g^{\rightarrow}((e_Y)^y)$,

$$e_X(g(y), g(w)) \ge g^{\to}((e_Y)^y)(g(w)) = \bigvee_{g(z)=g(w)} (e_Y)^y(z) \ge e_Y(w, y).$$

Thus, g is order-reversing.

Define $f: X \to Y$ as $f(x) = \sqcup g^{\leftarrow}((e_X)_x)$. By the definition of $f(x_1) = \sqcup g^{\leftarrow}((e_X)_{x_1})$, we have

$$e_{Y}(f(x_{1}), f(x_{2})) = \bigwedge_{z \in Y} (g^{\leftarrow}((e_{X})_{x_{1}})(z) \to e_{Y}(z, f(x_{2})))$$

$$\geq \bigwedge_{z \in Y} (g^{\leftarrow}((e_{X})_{x_{1}})(z) \to g^{\leftarrow}((e_{X})_{x_{2}})(z))$$

$$= \bigwedge_{z \in Y} (e_{X}(x_{1}, g(z)) \to e_{X}(x_{2}, g(z)))$$

$$\geq e_{X}(x_{2}, x_{1}).$$

Thus, f is order-reversing. Since

$$g(f(x)) = g(\sqcup g^{\leftarrow}((e_X)_x)) = \sqcap g^{\rightarrow}(g^{\leftarrow}((e_X)_x))$$

$$e_X(x, g(f(x))) = \bigwedge_{z \in X} (g^{\leftarrow}((e_X)_x))(z) \to e_X(x, z))$$
$$= \bigwedge_{z \in X} (\bigvee_{g(w)=z} (g^{\leftarrow}((e_X)_x)(w) \to e_X(x, z)))$$
$$= \bigwedge_{z \in X} (\bigvee_{g(w)=z} e_X(x, g(w)) \to e_X(x, z))$$
$$= \bigwedge_{w \in Y} (e_X(x, g(w))) \to e_X(x, g(w))) = 1.$$

Since $f(g(y)) = \sqcup g^{\leftarrow}((e_X)_{g(y)}),$

$$\begin{aligned} e_Y(y, f(g(y)) &\geq g^{\leftarrow}((e_X)_{g(y)})(y) = (e_X)_{g(y)}(g(y)) = 1, \\ e_X(x, g(y)) &\leq e_Y(f(g(y)), f(x)) = e_Y(f(g(y)), f(x)) \\ &\odot e_Y(y, f(g(y))) \leq e_Y(y, f(x)) \\ e_Y(y, f(x)) &\leq e_X(g(f(x)), g(y)) = e_X(g(f(x)), g(y)) \\ &\odot e_Y(x, g(f(x))) \leq e_X(x, g(y)). \end{aligned}$$

Thus $e_X(x, g(y)) = e_Y(y, f(x)).$

 $\left(2\right)$ and $\left(3\right)$ are similarly proved in $\left(1\right)$ and Theorem 3.5 in [11], respectively.

(4) First, (e_X, f, g, e_Y) is a dual residuated connection iff $f(\Box A) = \Box f^{\rightarrow}(A)$ for all $A \in L^X$.

 (\Rightarrow) Put $y_1 = \sqcap f^{\rightarrow}(A)$. Then

$$e_Y(y, y_1) = \bigwedge_{z \in Y} (f^{\to}(A)(z) \to e_Y(y, z))$$

$$= \bigwedge_{x \in X} (\bigvee_{f(x)=z} A(x) \to e_Y(y, f(x)))$$

$$= \bigwedge_{x \in X} \bigwedge_{f(x)=z} (A(x) \to e_X(g(y), x))$$

$$= \bigwedge_{x \in X} (A(x) \to e_X(g(y), x))$$

$$= e_X(g(y), \Box A) = e_Y(y, f(\Box A)).$$

Hence $y_1 = f(\Box A) = \Box f^{\rightarrow}(A)$.

(\Leftarrow) Put $A = (e_X)_x$. Since $\sqcap(e_X)_x = x$, then $f(x) = f(\sqcap(e_X)_x) = \sqcap f^{\rightarrow}((e_X)_x)$. By the definition of $\sqcap f^{\rightarrow}((e_X)_x)$,

$$e_Y(f(x), f(z)) \ge f^{\to}((e_X)_x)(f(z)) = \bigvee_{f(d)=f(z)} (e_X)_x(d) \ge e_X(x, z).$$

Thus, f is an order preserving map.

Define $g: Y \to X$ as $g(y) = \Box f^{\leftarrow}((e_Y)_y)$. By the definition of $g(y_2) = \Box f^{\leftarrow}((e_Y)_{y_2})$, we have

$$e_X(g(y_1), g(y_2)) = \bigwedge_{z \in X} (f^{\leftarrow}((e_Y)_{y_2})(z) \to e_X(g(y_1), z))$$

$$\geq \bigwedge_{z \in X} (f^{\leftarrow}((e_Y)_{y_2})(z) \to f^{\leftarrow}((e_Y)_{y_1})(z))$$

$$= \bigwedge_{z \in X} (e_Y(y_2, f(z)) \to e_Y(y_1, f(z)))$$

$$\geq e_Y(y_1, y_2).$$

Thus, g is an order preserving map. Since

$$f(g(y)) = f(\sqcap f^{\leftarrow}((e_Y)_y)) = \sqcap f^{\rightarrow}(f^{\leftarrow}((e_Y)_y))$$

$$e_Y(y, f(g(y))) = \bigwedge_{z \in X} (f^{\leftarrow}((e_Y)_y))(z) \to e_Y(y, z))$$
$$= \bigwedge_{z \in X} (\bigvee_{f(x)=z} (f^{\leftarrow}((e_Y)_y)(x) \to e_Y(y, z)))$$
$$= \bigwedge_{z \in X} (\bigvee_{f(x)=z} e_Y(y, f(x)) \to e_Y(y, f(x))) = 1.$$

Since $g(f(x)) = \Box f^{\leftarrow}((e_Y)_{f(x)}),$

$$e_X(g(f(x)), x) \ge f^{\leftarrow}((e_Y)_{f(x)})(x) = (e_X)_{f(x)}(f(x)) = 1.$$

$$\begin{array}{rcl} e_X(g(y),x) &\leq & e_Y(f(g(y)),f(x)) = e_Y(f(g(y)),f(x)) \\ & \odot & e_Y(y,f(g(y))) \leq e_Y(y,f(x)) \\ e_Y(y,f(x)) &\leq & e_X(g(y),g(f(x))) = e_X(g(y),g(f(x))) \\ & \odot & e_Y(g(f(x)),x) \leq e_X(g(y),x). \end{array}$$

Thus $e_X(g(y), x) = e_Y(y, f(x)).$

Second, (e_X, f, g, e_Y) is a dual residuated connection iff $g(\sqcup B) = \sqcup g^{\rightarrow}(B)$ for all $B \in L^Y$.

 (\Rightarrow) Put $x_0 = \sqcup g^{\rightarrow}(B)$. Then $g(\sqcup B) = \sqcup g^{\rightarrow}(B)$ from:

$$e_X(x_0, x) = \bigwedge_{z \in X} (g^{\rightarrow}(B)(z) \to e_X(z, x))$$

$$= \bigwedge_{z \in X} ((\bigvee_{g(y)=z} B(y) \to e_X(g(y), x)))$$

$$= \bigwedge_{z \in X} \bigwedge_{g(y)=z} (B(y) \to e_Y(y, f(x)))$$

$$= \bigwedge_{y \in Y} (B(y) \to e_Y(y, f(x)))$$

$$= e_Y(\sqcup B, f(x)) = e_X(g(\sqcup B), x).$$

Thus, $x_0 = g(\sqcup B) = \sqcup g^{\to}(B)$.

(⇐) Put $B = (e_Y)^y$. Since $\sqcup (e_Y)^y = y$, we have $g(y) = g(\sqcup (e_Y)^y) = \sqcup g^{\rightarrow}((e_Y)^y)$. By the definition of $\sqcup g^{\rightarrow}((e_Y)^y)$,

$$e_X(g(y), g(z)) = \bigwedge_{p \in X} (g^{\rightarrow}((e_Y)^y)(p) \rightarrow e_X(p, g(z)))$$

$$= \bigwedge_{p \in X} (\bigvee_{g(w)=p} (e_Y)^y(w) \rightarrow e_X(g(w), g(z)))$$

$$= \bigwedge_{p \in X} \bigwedge_{g(w)=p} (e_Y(w, y) \rightarrow e_X(g(w), g(z)))$$

$$= \bigwedge_{w \in Y} (e_Y(w, y) \rightarrow e_X(g(w), g(z)))$$

$$e_Y(w, y) \leq \bigwedge_{z \in Y} (e_X(g(y), g(z)) \rightarrow e_X(g(w), g(z)))$$

$$= e_X(g(w), g(y)).$$

Thus, g is order-preserving.

Define $f: X \to Y$ as $f(x) = \sqcup g^{\leftarrow}((e_X)^x)$. Since $e_Y(f(x), w) \leq g^{\leftarrow}((e_X)^x)(z) \to e_Y(z, w)$,

$$g^{\leftarrow}((e_X)^x)(z) \le \bigwedge_{w \in Y} (e_X(g(w), x) \to e_Y(z, w)) = e_Y(z, g(y)).$$

Thus, g is order-preserving, by the definition of $f(x_1) = \sqcup g^{\leftarrow}((e_X)^{x_1})$,

$$e_Y(f(x_1), f(x_2)) = \bigwedge_{z \in X} (g^{\leftarrow}((e_X)^{x_1})(z) \to e_Y(z, f(x_2)))$$

$$\geq \bigwedge_{z \in X} (g^{\leftarrow}((e_X)^{x_1})(z) \to g^{\leftarrow}((e_X)^{x_2})(z))$$

$$= \bigwedge_{z \in X} (e_X(g(z), x_1) \to e_X(g(z), x_2))$$

$$\geq e_X(x_1, x_2).$$

Since
$$g(f(x)) = g(\sqcup g^{\leftarrow}((e_X)^x)) = \sqcup g^{\rightarrow}(g^{\leftarrow}((e_X)^x))$$
, we have
 $e_X(g(f(x)), x) = \bigwedge_{z \in X} (g^{\rightarrow}(g^{\leftarrow}((e_X)^x))(z) \to e_X(z, x))$
 $= \bigwedge_{z \in X} (\bigvee_{g(y)=z} (g^{\leftarrow}((e_X)^x))(z) \to e_X(z, x))$
 $= \bigwedge_{z \in X} (\bigvee_{g(y)=z} e_X(g(y), x) \to e_Y(g(y), x)) = 1$

Since $f(g(y)) = \sqcup g^{\leftarrow}((e_X)^{g(y)}),$

$$\begin{array}{rcl} e_{Y}(y,f(g(y)) & \geq & g^{\leftarrow}((e_{X})^{g(y)})(y) = (e_{X})^{g(y)}(g(y)) = 1, \\ e_{X}(g(y),x) & \leq & e_{Y}(f(g(y)),f(x)) = e_{Y}(f(g(y)),f(x)) \\ & \odot & e_{Y}(y,f(g(y))) \leq e_{Y}(y,f(x)) \\ e_{Y}(y,f(x)) & \leq & e_{X}(g(y),g(f(x))) = e_{X}(g(y),g(f(x))) \\ & \odot & e_{Y}(g(f(x)),x) \leq e_{X}(g(y),x). \end{array}$$

Thus $e_X(g(y), x) = e_Y(y, f(x)).$

References

- [1] R. Bělohlávek, Fuzzy Galois connections, Math. Log. Q. 45 (1999), 497–504.
- [2] R. Bělohlávek, Lattices of fixed points of Galois connections, Math. Log. Q. 47 (2001), 111–116.
- [3] R. Bělohlávek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic 128 (2004), 277–298.
- [4] J.G. Garcia, I.M. Perez, M.A. Vicente, D. Zhang, Fuzzy Galois connections categorically, Math. Log. Q. 56 (2) (2010), 131–147.
- [5] G. Georgescu, A. Popescue, Non-dual fuzzy connections, Arch. Math. Logic 43 (2004), 1009–1039.
- [6] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers Dordrecht (1998).
- J. Järvinen, M. Kondo, J. Kortelainen, *Logics from Galois connections*, Internat. J. Approx. Reason. 49 (2008), 595–606.
- [8] A. Melton, D.A. Schmidt, G.E. Strecker, Galois connections and compter sciences, Leture Notes in Computer Science, Springer-Verlag 240 (1986), 299–312.
- [9] Ewa. Orlowska, I. Rewitzky, Algebras for Galois-style connections and their discrete duality, Fuzzy Sets and Systems 161 (2010), 1325–1342.
- [10] R. Wille, Restructuring lattice theory; an approach based on hierarchies of concept, in: 1. Rival(Ed.), Ordered Sets, Reidel, Dordrecht, Boston, 1982.

[11] W. Yao, L.X. Lu, Fuzzy Galois connections on fuzzy posets, Math. Log. Q. 55 (1) (2009), 105–112.

Department of Mathematics Natural Science Gangneung-Wonju National University Gangneung, Gangwondo, 210-702, Korea *E-mail*: yck@gwnu.ac.kr

Department of Applied Mathematics Pai Chai University Dae Jeon, 302-735, Korea *E-mail*: yskim@pcu.ac.kr