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FUZZY CONNECTIONS AND COMPLETENESS IN

COMPLETE RESIDUATED LATTICES

Yong Chan Kim∗ and Young Sun Kim

Abstract. In this paper, we investigate the properties of fuzzy
Galois (dual Galois, residuated, dual residuated) connections in a
complete residuated lattice L.

1. Introduction

Galois connection is an important mathematical tool for algebraic
structure, data analysis and knowledge processing [1-5,7-11]. Orlowska
and Rewitzky [9] investigated the algebraic structures of operators of
Galois-style (Galois, dual Galois, residuated, dual residuated) connec-
tions on set. Hájek [6] introduced a complete residuated lattice L which
is an algebraic structure for many valued logic. Recently, Yao and Lu
[11] introduced Galois connections and fuzzy completeness in a complete
residuated lattice L. Bělohlávek [1-3] developed the notion of fuzzy con-
texts using Galois connections with R ∈ LX×Y on a complete residuated
lattice L.

In this paper, we investigate the properties of fuzzy Galois (dual Ga-
lois, residuated, dual residuated) connections as an extension of Yao and
Lu [11] in a complete residuated lattice L.
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2. Preliminaries

Definition 2.1. ([6,11]) An algebra (L,∧,∨,⊙,→, 0, 1) is called a
complete residuated lattice if it satisfies the following conditions:

(C1) L = (L,≤,∨,∧, 1, 0) is a complete lattice with the greatest element
1 and the least element 0;

(C2) (L,⊙, 1) is a commutative monoid;
(C3) x⊙ y ≤ z iff x ≤ y → z for x, y, z ∈ L.

Remark 2.2. ([6]) (1) A completely distributive lattice L = (L,≤
,∨,∧ = ⊙,→, 1, 0) is a complete residuated lattice defined by

x → y =
∨

{z | x ∧ z ≤ y}.

In particular, the unit interval ([0, 1],∨,∧ = ⊙,→, 0, 1) is a complete
residuated lattice defined by

x → y =
∨

{z | x ∧ z ≤ y}.

(2) The unit interval ([0, 1],∨,∧,⊙,→, 0, 1) with a left-continuous t-
norm ⊙ is a complete residuated lattice defined by

x → y =
∨

{z | x⊙ z ≤ y}.

In this paper, we assume (L,∧,∨,⊙,→, 0, 1) is a complete residuated
latttice.

Definition 2.3. ([11]) Let X be a set. A function eX : X ×X → L
is called:

(E1) reflexive if eX(x, x) = 1 for all x ∈ X,
(E2) transitive if eX(x, y)⊙ eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X.
(E3) if eX(x, y) = eX(y, x) = 1, then x = y.
If eX satisfies (E1) and (E2), eX is a fuzzy preorder and (X, eX) is

a fuzzy preorder set. If e satisfies (E1), (E2) and (E3), eX is a fuzzy
partially order and (X, eX) is a fuzzy partially order set (simply, fuzzy
poset).

Example 2.4. (1) We define a function eL : L×L → L as eL(x, y) =
x → y. Then eL is a partial order.

(2) We define a function eLX : LX × LX → L as eLX (A,B) =∧
x∈X(A(x) → B(x)). Then (LX , eLX ) is a fuzzy poset.

(3) If (X, eX) is a fuzzy poset and we define a function e−1X (x, y) =
eX(y, x), then (X, e−1X ) is a fuzzy poset.
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Definition 2.5. Let (X, eX) and (Y, eY ) be a fuzzy poset and f :
X → Y and g : Y → X maps.

(1) (eX , f, g, eY ) is called a Galois connection if for all x ∈ X, y ∈ Y ,

eY (y, f(x)) = eX(x, g(y)).

(2) (eX , f, g, eY ) is called a dual Galois connection if for all x ∈ X, y ∈
Y ,

eY (f(x), y) = eX(g(y), x).

(3) (eX , f, g, eY ) is called a residuated connection if for all x ∈ X, y ∈
Y ,

eY (f(x), y) = eX(x, g(y)).

(4) (eX , f, g, eY ) is called a dual residuated connection if for all x ∈
X, y ∈ Y ,

eY (y, f(x)) = eX(g(y), x).

(5) f is an order preserving map if eY (f(x1), f(x2)) ≥ eX(x1, x2) for
all x1, x2 ∈ X.

(6) f is an order reversing map if eY (f(x1), f(x2)) ≥ eX(x2, x1) for all
x1, x2 ∈ X.

3. Fuzzy connections and completeness in complete residu-
ated lattices

Definition 3.1. ([10]) Let (X, eX) be a fuzzy poset and A ∈ LX .

(1) A point x0 is called a join (or supremum) of A, denoted by x0 = ⊔A,
if it satisfies

(J1) A(x) ≤ eX(x, x0),
(J2)

∧
x∈X(A(x) → eX(x, y)) ≤ eX(x0, y).
A point x1 is called a meet (or infimum) of A, denoted by x1 =

⊓A, if it satisfies
(M1) A(x) ≤ eX(x1, x),
(M2)

∧
x∈X(A(x) → eX(y, x)) ≤ eX(y, x1).
The pair (X, eX) is called a fuzzy complete lattice if for all A ∈

LX , ⊔A and ⊓A exist.
(2) x0 = maxA is called a maximal element if A(x0) = 1 and A(y) ≤

eX(y, x0), for all y ∈ X.
(3) x1 = minA is called a minimal element if A(x1) = 1 and A(y) ≤

eX(x1, y), for all y ∈ X.
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Remark 3.2. Let (X, eX) be a fuzzy poset and A ∈ LX . If x0 is a
join of A, then it is unique because eX(x0, y) = eX(y0, y) for all y ∈ X,
put y = x0 or y = y0, then eX(x0, y0) = eX(y0, x0) = 1 implies x0 = y0.
Similarly, if a meet of A exist, then it is unique.

Theorem 3.3. Let (X, eX) be a fuzzy poset and A ∈ LX .
(1) x0 is a join of A iff

∧
x∈X(A(x) → eX(x, y)) = eX(x0, y).

(2) x1 is a meet of A iff
∧

x∈X(A(x) → eX(y, x)) = eX(y, x1).
(3) x0 = maxA iff A(x0) = 1 and x0 = ⊔A.
(4) x1 = minA iff A(x1) = 1 and x1 = ⊓A.

Proof. (1) (⇒) Let x0 be a join of A. Then A(x) ≤ eX(x, x0). Thus,
A(x)⊙ eX(x0, y) ≤ eX(x, x0)⊙ eX(x0, y) ≤ eX(x, y). Hence eX(x0, y) ≤∧

x∈X(A(x) → eX(x, y)). By (J2), the equality holds.
(⇐) Since

∧
x∈X(A(x) → eX(x, x0)) = eX(x0, x0) = 1, then A(x) ≤

eX(x, x0). Hence the result holds.
(2) (⇒) Let x1 be a meet of A. Then A(x) ≤ eX(x1, x). Thus,

eX(y, x1)⊙ A(x) ≤ eX(y, x1)⊙ eX(x1, x) ≤ eX(y, x). Hence eX(y, x1) ≤∧
x∈X(A(x) → eX(x, y)). By (M2), the equality holds.
(⇐) Since

∧
x∈X(A(x) → eX(x1, x)) = eX(x1, x1) = 1, then A(x) ≤

eX(x1, x). Hence the result holds.
(3) Let x0 = maxA. Then∧

z∈X

(A(z) → eX(z, x)) ≤ A(x0) → eX(x0, x) = eX(x0, x),

∧
z∈X

(A(z) → eX(z, x)) ≥
∧
z∈X

(eX(z, x0) → eX(z, x)) = eX(x0, x).

Thus eX(x0, x) =
∧

z∈X(A(z) → eX(z, x)). So, x0 = ⊔A.
Let A(x0) = 1 and x0 = ⊔A. Then eX(x0, x0) =

∧
z∈X(A(z) →

eX(z, x0)) = 1 implies A(z) ≤ eX(z, x0). Then x0 = maxA.
(4) It is similarly proved as (3).

Remark 3.4. Let (X, eX) be a fuzzy poset and A ∈ LX .

(1) Since
∧

x∈X(eX(x, y) → eX(x, z)) = eX(y, z), then, by Theorem 3.3
(1), y = ⊔(eX)y where (eX)

y(x) = eX(x, y).
(2) Since

∧
z∈X(eX(y, z) → eX(x, z)) = eX(x, y), then, by Theorem 3.3

(3), y = ⊓(eX)y where (eX)y(x) = eX(y, x).

Remark 3.5. Let (L, eL) be a fuzzy poset and A ∈ L.
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(1) If x0 is a join of A, then
∧

x∈L(A(x) → eL(x, y)) =
∧

x∈L(A(x) →
(x → y)) =

∨
x∈L(x ⊙ A(x)) → y = eL(x0, y) = x0 → y. So,

x0 = ⊔A =
∨

x∈L(x⊙ A(x)).
(2) If x1 is a meet of A iff

∧
x∈L(A(x) → eL(y, x)) =

∧
x∈L(A(x) →

(y → x)) = y →
∧

x∈L(A(x) → x) = eX(y, x1) = y → x1, then
x1 = ⊓A =

∧
x∈L(A(x) → x).

Example 3.6. Let X = {a, b, c} be a set. Define a binary operation
⊙ (called  Lukasiewicz conjection) on L = [0, 1] by

x⊙ y = max{0, x+ y − 1}, x → y = min{1− x+ y, 1}.

Let (X = {a, b, c}, eX) be a fuzzy poset as follows:

eX(a, a) = 1, eX(a, b) = 0.6, eX(a, b) = 0.5

eX(b, a) = 0.8, eX(b, b) = 1, eX(b, c) = 0.7

eX(c, a) = 0.9, eX(c, b) = 0.6, eX(c, c) = 1.

(1) For A = (eX)
a = (1, 0.8, 0.9)t, we have a = ⊔A = maxA from∧

(A(x) → eX(x, z)) = eX(a, z).

(2) For A = (eX)
b = (0.6, 1, 0.6)t, we have b = ⊔A = maxA from∧

(A(x) → eX(x, z)) = eX(b, z).

(3) For A = (eX)
c = (0.5, 0.7, 1)t, we have c = ⊔A from∧

x∈X

(A(x) → eX(x, y)) = eX(⊔A, y) = eX(c, y).

(4) For A = (eX)a = (1, 0.6, 0.5)t, we have a = ⊓A = minA from∧
(A(x) → eX(z, x)) = eX(z, a).

(5) For A = (eX)b = (0.8, 1, 0.7)t, we have b = ⊓A = minA from∧
(A(x) → eX(z, x)) = eX(z, b).

(6) For A = (eX)c = (0.9, 0.6, 1)t, we have c = ⊓A = minA from∧
x∈X

(A(x) → eX(z, x)) = eX(z, c).
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(7) For A = (0.5, 0.8, 0.6)t, ⊓A and ⊔A do not exist from:

0.9 =
∧

(A(x) → eX(x, c)) ̸= eX(y, c), ∀y ∈ {a, b, c}

0.8 =
∧

(A(x) → eX(a, x)) ̸= eX(a, y), ∀y ∈ {a, b, c}.

Hence (X, eX) is not fuzzy complete.

Theorem 3.7. Let (X, eX) and (Y, eY ) be complete.

(1) (eX , f, g, eY ) is a Galois connection iff f is an order reversing map
and g(y) = max f←((eY )y) iff g is an order reversing map and
f(x) = max g←((eX)x).

(2) (eX , f, g, eY ) is a dual Galois connection iff f is an order reversing
map and g(y) = min f←((eY )

y) iff g is an order reversing map and
f(x) = min g←((eX)

x).
(3) (eX , f, g, eY ) is a residuated connection iff f is an order preserving

map and g(y) = max f←((eY )
y) iff g is an order preserving map

and f(x) = min g←((eX)x).
(4) (eX , f, g, eY ) is a dual residuated connection iff f is an order pre-

serving map and g(y) = min f←((eY )y) iff g is an order preserving
map and f(x) = max g←((eX)

x).

Proof. (1) We only show that (eX , f, g, eY ) is a Galois connection iff
f is an order reversing map and g(y) = max f←((eY )y) because other
case is similarly proved.

(⇒) Since eX(x, g(f(x))) = eY (f(x), f(x)) = 1, we have

eY (f(x), f(y)) = eX(y, g(f(x)))

≥ eX(y, x)⊙ eX(x, g(f(x))) = eX(y, x).

Hence f is an order reversing map. Moreover, g(y) = max f←((eY )y)
because

f←((eY )y)(g(y)) = (eY )y(f(g(y))

= eY (y, f(g(y)))

= eX(g(y), g(y)) = 1,

f←((eY )y)(x) = (eY )y(f(x)) = eY (y, f(x)) = eX(x, g(y)).

(⇐) Since g(y) = max f←((eY )y), we have

eY (y, f(x)) = (eY )y(f(x)) = f←((eY )y)(x) ≤ eX(x, g(y)).
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Since g(y) = max f←((eY )y),

f←((eY )y)(g(y)) = (eY )y(f(g(y)) = eY (y, f(g(y))) = 1.

eX(x, g(y)) ≤ eY (f(g(y)), f(x))⊙ eY (y, f(g(y))) ≤ eY (y, f(x)).

Thus eX(x, g(y)) = eY (y, f(x)).
(2) We only show that (eX , f, g, eY ) is a dual Galois connection iff f

is an order reversing map and g(y) = min f←((eY )
y) because other case

is similarly proved.
(⇒) Since eX(g(f(x)), x) = eY (f(x), f(x)) = 1, we have

eY (f(x), f(y)) = eX(g(f(y)), x)

≥ eX(g(f(y)), y)⊙ eX(y, x) = eX(y, x).

Hence f is an order reversing map. Moreover, g(y) = min f←((eY )
y)

because

f←((eY )
y)(g(y)) = (eY )

y(f(g(y))

= eY (f(g(y)), y) = eX(g(y), g(y)) = 1

f←((eY )
y)(x) = (eY )

y(f(x)) = eY (f(x), y) = eX(g(y), x).

(⇐) Since g(y) = min f←((eY )
y), we have

eY (f(x), y) = (eY )
y(f(x)) = f←((eY )

y)(x) ≤ eX(g(y), x).

Since g(y) = min f←((eY )
y),

f←((eY )
y)(g(y)) = (eY )

y(f(g(y)) = eY (f(g(y)), y) = 1.

eX(g(y), x) ≤ eY (f(x), f(g(y)))⊙ eY (f(g(y)), y) ≤ eY (f(x), y).

Thus, eY (f(x), y) = eX(g(y), x).
(3) It follows from Theorem 3.4 in [11].
(4) First, we show that (eX , f, g, eY ) is a dual residuated connection

iff f is an order preserving map and g(y) = min f←((eY )y).
(⇒) Since eX(g(f(x)), x) = eY (f(x), f(x)) = 1, we have

eY (f(x), f(y)) = eX(g(f(x)), y)

≥ eX(x, y)⊙ eX(g(f(x)), x) = eX(x, y).

We obtain g(y) = min f←((eY )y) because

f←((eY )y)(g(y)) = (eY )y(f(g(y))) = eY (y, f(g(y)))

= eX(g(y), g(y)) = 1,

f←((eY )y)(x) = (eY )y(f(x)) = eY (y, f(x))

= eX(g(y), x).
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(⇐) Since g(y) = min f←((eY )y), we have

eY (y, f(x)) = (eY )y(f(x)) = f←((eY )y)(x) ≤ eY (g(y), x).

Since g(y) = min f←((eY )y),

f←((eY )y)(g(y)) = (eY )y(f(g(y)) = eY (y, f(g(y))) = 1.

eX(g(y), x) ≤ eY (f(g(y)), f(x))⊙ eY (y, f(g(y))) ≤ eY (y, f(x)).

Hence eX(g(y), x) = eY (y, f(x)).
Second, we show that (eX , f, g, eY ) is a dual residuated connection iff

g is an order preserving map and f(x) = max g←((eX)
x).

(⇒) Since eY (y, f(g(y))) = eX(g(y), g(y)) = 1, we have

eX(g(x), g(y)) = eY (x, f(g(y))) ≥ eY (x, y)⊙ eY (y, g(f(y))) = eY (x, y).

We obtain f(x) = max g←((eX)
x) because

g←((eX)
x)(f(x)) = (eX)

x(g(f(x))) = eY (g(f(x)), x)

= eY (f(x), f(x)) = 1,

g←((eX)
x)(y) = (eX)

x(g(y)) = eX(g(y), x) = eY (y, f(x)).

(⇐) Since f(x) = max g←((eX)
x), we have

eX(g(y), x) = (eX)
x(g(y)) = g←((eX)

x)(y) ≤ eY (y, f(x)).

Since f(x) = max g←((eX)
x),

g←((eX)
x)(f(x)) = (eX)

x(g(f(x)) = eX(g(f(x)), x) = 1.

eY (y, f(x)) ≤ eX(g(y), g(f(x)))⊙ eX(g(f(x)), x) ≤ eX(g(y), x).

Hence eX(g(y), x) = eY (y, f(x)).

Theorem 3.8. Let (X, eX) and (Y, eY ) be complete.

(1) (eX , f, g, eY ) is a Galois connection iff f(⊔A) = ⊓f→(A) for all
A ∈ LX iff g(⊔B) = ⊓g→(B) for all B ∈ LY .

(2) (eX , f, g, eY ) is a dual Galois connection iff f(⊓A) = ⊔f→(A) for
all A ∈ LX iff g(⊓B) = ⊔g→(B) for all B ∈ LY .

(3) (eX , f, g, eY ) is a residuated connection iff f(⊔A) = ⊔f→(A) for all
A ∈ LX iff g(⊓B) = ⊓g→(B) for all B ∈ LY .

(4) (eX , f, g, eY ) is a dual residuated connection iff, for all A ∈ LX ,
f(⊓A) = ⊓f→(A) iff g(⊔B) = ⊔g→(B) for all B ∈ LY .
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Proof. (1) First, we will show that (eX , f, g, eY ) is a Galois connection
iff f(⊔A) = ⊓f→(A) for all A ∈ LX .

(⇒) Put y0 = ⊓f→(A). Then

eY (y, y0) =
∧
z∈Y

(f→(A)(z) → eY (y, z))

=
∧
z∈Y

((
∨

f(x)=z

A(x) → eY (y, f(x)))

=
∧
z∈Y

∧
f(x)=z

(A(x) → eY (y, f(x)))

=
∧
x∈X

(A(x) → eX(x, g(y)))

= eX(⊔A, g(y)) = eY (y, f(⊔A)).

Hence y0 = f(⊔A) = ⊓f→(A).
(⇐) Put A = (eX)

y. Since ⊔(eX)y = y from Remark 3.4(1), we have
f(y) = f(⊔(eX)y) = ⊓f→((eX)y). By the definition of ⊓f→((eX)y),

eY (f(y), f(x)) ≥ f→((eX)
y)(f(x)) =

∨
f(z)=f(x)

(eX)
y(z) ≥ eX(x, y).

Thus, f is order-reversing.

Define g : Y → X as g(y) = ⊔f←((eY )y). By the definition of
g(y1) = ⊔f←((eY )y1), we have

eX(g(y1), g(y2)) =
∧
z∈Y

(f←((eY )y1)(z) → eX(z, g(y2)))

≥
∧
z∈Y

(f←((eY )y1)(z) → f←((eY )y2)(z))

=
∧
z∈Y

(eY (y1, f(z)) → eY (y2, f(z)))

≥ eY (y2, y1).

Thus, g is order-reversing. Since

f(g(y)) = f(⊔f←((eY )y)) = ⊓f→(f←((eY )y))
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eY (y, f(g(y))) =
∧
z∈Y

(f→(f←((eY )y))(z) → eY (y, z))

=
∧
z∈Y

(
∨

f(x)=z

(f←((eY )y))(z) → eY (y, z))

=
∧
z∈Y

(
∨

f(x)=z

eY (y, f(x)) → eY (y, z))

=
∧
x∈X

(eY (y, f(x)) → eY (y, f(x))) = 1.

Since g(f(x)) = ⊔f←((eY )f(x)),
eX(x, g(f(x)) ≥ f←((eY )f(x))(x) = (eY )f(x)(f(x)) = 1,

eX(x, g(y)) ≤ eY (f(g(y)), f(x)) = eY (f(g(y)), f(x))

⊙ eY (y, f(g(y))) ≤ eY (y, f(x)),

eY (y, f(x)) ≤ eX(g(f(x)), g(y)) = eX(g(f(x)), g(y))

⊙ eY (x, g(f(x))) ≤ eX(x, g(y)).

Thus eX(x, g(y)) = eY (y, f(x)).
Second, (eX , f, g, eY ) is a Galois connection iff g(⊔B) = ⊓g→(B) for

all B ∈ LY .
(⇒) Put x0 = ⊓g→(B). Then

eX(x, x0) =
∧
z∈X

(g→(B)(z) → eX(x, z))

=
∧
z∈X

(
∨

g(y)=z

B(y) → eX(x, g(y)))

=
∧
z∈X

∧
g(y)=z

(B(y) → eY (y, f(x)))

=
∧
y∈Y

(B(y) → eY (y, f(x)))

= eY (⊔lB, f(x)) = eX(x, g(⊔lB)).

(⇐) Put B = (eY )
y. Then g(y) = g(⊔(eY )y) = ⊓g→((eY )y). By the

definition of ⊓g→((eY )y),

eX(g(y), g(w)) ≥ g→((eY )
y)(g(w)) =

∨
g(z)=g(w)

(eY )
y(z) ≥ eY (w, y).

Thus, g is order-reversing.
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Define f : X → Y as f(x) = ⊔g←((eX)x). By the definition of
f(x1) = ⊔g←((eX)x1), we have

eY (f(x1), f(x2)) =
∧
z∈Y

(g←((eX)x1)(z) → eY (z, f(x2)))

≥
∧
z∈Y

(g←((eX)x1)(z) → g←((eX)x2)(z))

=
∧
z∈Y

(eX(x1, g(z)) → eX(x2, g(z)))

≥ eX(x2, x1).

Thus, f is order-reversing. Since

g(f(x)) = g(⊔g←((eX)x)) = ⊓g→(g←((eX)x))

eX(x, g(f(x))) =
∧
z∈X

(g→(g←((eX)x))(z) → eX(x, z))

=
∧
z∈X

(
∨

g(w)=z

(g←((eX)x)(w) → eX(x, z))

=
∧
z∈X

(
∨

g(w)=z

eX(x, g(w)) → eX(x, z))

=
∧
w∈Y

(eX(x, g(w))) → eX(x, g(w))) = 1.

Since f(g(y)) = ⊔g←((eX)g(y)),

eY (y, f(g(y)) ≥ g←((eX)g(y))(y) = (eX)g(y)(g(y)) = 1,

eX(x, g(y)) ≤ eY (f(g(y)), f(x)) = eY (f(g(y)), f(x))

⊙ eY (y, f(g(y))) ≤ eY (y, f(x))

eY (y, f(x)) ≤ eX(g(f(x)), g(y)) = eX(g(f(x)), g(y))

⊙ eY (x, g(f(x))) ≤ eX(x, g(y)).

Thus eX(x, g(y)) = eY (y, f(x)).
(2) and (3) are similarly proved in (1) and Theorem 3.5 in [11], re-

spectively.
(4) First, (eX , f, g, eY ) is a dual residuated connection iff f(⊓A) =

⊓f→(A) for all A ∈ LX .
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(⇒) Put y1 = ⊓f→(A). Then

eY (y, y1) =
∧
z∈Y

(f→(A)(z) → eY (y, z))

=
∧
x∈X

(
∨

f(x)=z

A(x) → eY (y, f(x)))

=
∧
x∈X

∧
f(x)=z

(A(x) → eX(g(y), x))

=
∧
x∈X

(A(x) → eX(g(y), x))

= eX(g(y),⊓A) = eY (y, f(⊓A)).

Hence y1 = f(⊓A) = ⊓f→(A).
(⇐) Put A = (eX)x. Since ⊓(eX)x = x, then f(x) = f(⊓(eX)x) =

⊓f→((eX)x). By the definition of ⊓f→((eX)x),

eY (f(x), f(z)) ≥ f→((eX)x)(f(z)) =
∨

f(d)=f(z)

(eX)x(d) ≥ eX(x, z).

Thus, f is an order preserving map.

Define g : Y → X as g(y) = ⊓f←((eY )y). By the definition of
g(y2) = ⊓f←((eY )y2), we have

eX(g(y1), g(y2)) =
∧
z∈X

(f←((eY )y2)(z) → eX(g(y1), z))

≥
∧
z∈X

(f←((eY )y2)(z) → f←((eY )y1)(z))

=
∧
z∈X

(eY (y2, f(z)) → eY (y1, f(z)))

≥ eY (y1, y2).

Thus, g is an order preserving map. Since

f(g(y)) = f(⊓f←((eY )y)) = ⊓f→(f←((eY )y))
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eY (y, f(g(y))) =
∧
z∈X

(f→(f←((eY )y))(z) → eY (y, z))

=
∧
z∈X

(
∨

f(x)=z

(f←((eY )y)(x) → eY (y, z))

=
∧
z∈X

(
∨

f(x)=z

eY (y, f(x)) → eY (y, f(x))) = 1.

Since g(f(x)) = ⊓f←((eY )f(x)),

eX(g(f(x)), x) ≥ f←((eY )f(x))(x) = (eX)f(x)(f(x)) = 1.

eX(g(y), x) ≤ eY (f(g(y)), f(x)) = eY (f(g(y)), f(x))

⊙ eY (y, f(g(y))) ≤ eY (y, f(x))

eY (y, f(x)) ≤ eX(g(y), g(f(x))) = eX(g(y), g(f(x)))

⊙ eY (g(f(x)), x) ≤ eX(g(y), x).

Thus eX(g(y), x) = eY (y, f(x)).

Second, (eX , f, g, eY ) is a dual residuated connection iff g(⊔B) =
⊔g→(B) for all B ∈ LY .

(⇒) Put x0 = ⊔g→(B). Then g(⊔B) = ⊔g→(B) from:

eX(x0, x) =
∧
z∈X

(g→(B)(z) → eX(z, x))

=
∧
z∈X

((
∨

g(y)=z

B(y) → eX(g(y), x))

=
∧
z∈X

∧
g(y)=z

(B(y) → eY (y, f(x)))

=
∧
y∈Y

(B(y) → eY (y, f(x)))

= eY (⊔B, f(x)) = eX(g(⊔B), x).

Thus, x0 = g(⊔B) = ⊔g→(B).
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(⇐) Put B = (eY )
y. Since ⊔(eY )y = y, we have g(y) = g(⊔(eY )y) =

⊔g→((eY )y). By the definition of ⊔g→((eY )y),

eX(g(y), g(z)) =
∧
p∈X

(g→((eY )
y)(p) → eX(p, g(z)))

=
∧
p∈X

(
∨

g(w)=p

(eY )
y(w) → eX(g(w), g(z)))

=
∧
p∈X

∧
g(w)=p

(eY (w, y) → eX(g(w), g(z)))

=
∧
w∈Y

(eY (w, y) → eX(g(w), g(z)))

eY (w, y) ≤
∧
z∈Y

(eX(g(y), g(z)) → eX(g(w), g(z)))

= eX(g(w), g(y)).

Thus, g is order-preserving.

Define f : X → Y as f(x) = ⊔g←((eX)x). Since eY (f(x), w) ≤
g←((eX)

x)(z) → eY (z, w),

g←((eX)
x)(z) ≤

∧
w∈Y

(eX(g(w), x) → eY (z, w)) = eY (z, g(y)).

Thus, g is order-preserving, by the definition of f(x1) = ⊔g←((eX)x1),

eY (f(x1), f(x2)) =
∧
z∈X

(g←((eX)
x1)(z) → eY (z, f(x2)))

≥
∧
z∈X

(g←((eX)
x1)(z) → g←((eX)

x2)(z))

=
∧
z∈X

(eX(g(z), x1) → eX(g(z), x2))

≥ eX(x1, x2).
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Since g(f(x)) = g(⊔g←((eX)x)) = ⊔g→(g←((eX)x)), we have

eX(g(f(x)), x) =
∧
z∈X

(g→(g←((eX)
x))(z) → eX(z, x))

=
∧
z∈X

(
∨

g(y)=z

(g←((eX)
x))(z) → eX(z, x))

=
∧
z∈X

(
∨

g(y)=z

eX(g(y), x) → eY (g(y), x)) = 1.

Since f(g(y)) = ⊔g←((eX)g(y)),

eY (y, f(g(y)) ≥ g←((eX)
g(y))(y) = (eX)

g(y)(g(y)) = 1,

eX(g(y), x) ≤ eY (f(g(y)), f(x)) = eY (f(g(y)), f(x))

⊙ eY (y, f(g(y))) ≤ eY (y, f(x))

eY (y, f(x)) ≤ eX(g(y), g(f(x))) = eX(g(y), g(f(x)))

⊙ eY (g(f(x)), x) ≤ eX(g(y), x).

Thus eX(g(y), x) = eY (y, f(x)).

References
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