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A HOMOMORPHISM OF POINTED MINIMAL SETS

AND QUASI-ELLIS GROUPS

Hyung-soo Song

Abstract. In this paper we give some results on homomorphisms
of pointed minimal sets. In particular, we investigate some charac-
terizations on quasi-Ellis groups.

1. Introduction

Universal minimal sets were studied by R. Ellis in [2]. In [4], S.
Glasner introduced Ellis groups which are certain groups of the uni-
versal minimal set. Given a homomorphism of pointed minimal sets
π : (X, x0) → (Y, y0), we can define Ellis groups G(X, x0) and G(Y, y0)
and give relationships between the homomorphism and Ellis groups.

In this paper we introduce the concept of quasi-Ellis groups S(X, x0)
and S(Y, y0) which are generalizations of Ellis groups and investigate
some characterizations on quasi-Ellis groups.

2. Preliminaries

A transformation group, or flow, (X,T ), will consist of a jointly con-
tinuous action of the topological group T on the compact Hausdorff space
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X. The group T , with identity e, is assumed to be topologically discrete
and remain fixed throughout this paper, so we may write X instead of
(X,T ).

A point transitive flow, (X, x0) consists of a flow X with a distin-
guished point x0 which has dense orbit.

A homomorphism of flows is a continuous, equivariant map. A homo-
morphism whose domain is point transitive is determined by its value
at a single point. A one-one homomorphism of X onto X is called an
automorphism of X. We denote the group of automorphisms of X by
A(X).

A flow is said to be minimal if every point has dense orbit. Minimal
flows are also referred to as minimal sets. M is said to be a universal
minimal set if it is a minimal set such that every minimal set is a ho-
momorphic image of M . A homomorphism whose range is minimal is
always onto.

The points x, x′ ∈ X are said to be proximal if there exists a net
(ti) in T such that lim xti = limx′ti. The points x, x′ ∈ X are said
to be distal if either x = x′ or x and x′ are not proximal. Thus if x
and x′ are both proximal and distal, they must be equal. The set of
all proximal pairs in X will be denoted P (X,T ) or simply P . X is
said to be proximal if P = X × X. Given any point x ∈ X, we define
P (x) = {x′ ∈ X | (x, x′) ∈ P}.

A homomorphism π : X → Y is said to be proximal (resp. distal) if
whenever x, x′ ∈ π−1(y) then x and x′ are proximal (resp. distal).

Given a flow (X,T ), we may regard T as a set of self-homeomorphisms
of X. We define E(X), the enveloping semigroup of X to be the closure
of T in XX , taken with the product topology. E(X) is at once a flow and
a sub-semigroup of XX . The minimal right ideals of E(X), considered
as a semigroup, coincide with the minimal sets of E(X).

If E is some enveloping semigroup, and there exists a homomorphism
θ : (E, e) → (E(X), e) we say that E is an enveloping semigroup for X.
If such a homomorphism exists, it must be unique, and, given x ∈ X
and p ∈ E we may write xp to mean xθ(p) unambiguously.

Lemma 2.1. ([2]) Let E be an enveloping semigroup for X and let I
be a minimal right ideal in E. The following are true :

(1) The set J(I) of idempotent elements in I is non-empty.
(2) up = p whenever p ∈ I and u ∈ J(I).
(3) Iu is a group with identity u for each u ∈ J(I).
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(4) Given x ∈ X, the following conditions are equivalent :

(a) x is an almost periodic point.

(b) xT = xI.

(c) x = xu for some u ∈ J(I).

Lemma 2.2. ([4]) Let E be an enveloping semigroup for X, Then for
any points x, x′ ∈ X, (a) and (b) are equivalent :

(a) (x, x′) ∈ P (X,T ).
(b) There exists a minimal right ideal I in E such that xp = x′p for

every p ∈ I.
Moreover, if X is minimal, (a) and (b) are equivalent to :

(c) There exists u ∈ J(I) such that x′ = xu.

Lemma 2.3. ([5]) If (X, x) and (Y, y) are point transitive flows, and
E is an enveloping semigroup for X and Y , there exists a (unique)
homomorphism ζ : (X, x) → (Y, y) if and only if xp = xq for p, q ∈ E
implies yp = yq.

Regular minimal sets were first studied by Auslander in [1]. A minimal
set is said to be regular if it’s isomorphic to a minimal right ideal in some
enveloping semigroup.

Regular homomorphisms can be defined by extending this notion to
homomorphisms with minimal range as shown in Definition 2.4 and
Lemma 2.5 below.

Definition 2.4. ([5]) We say that a homomorphism ψ : Z → Y , Z
and Y minimal, is regular with respect to π : X → Y if, given any pair
of homomorphisms γ : M → X and δ : M → Z with π◦γ = ψ◦δ, there
exists a homomorphism θ : Z → X with θ◦δ = γ and π◦θ = ψ.

Lemma 2.5. ([5]) Given a homomorphism π : X → Y with X and Y
minimal, the following statements are equivalent :

(a) π is regular.
(b) π is regular with respect to itself.
(c) For any two points x, x′ ∈ X with π(x) = π(x′) there exists ξ ∈

A(X) such that (ξ(x), x′) ∈ P (X,T ) and π◦ξ = π.
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3. Some results on homomorphisms of pointed minimal sets

Let βT be the Stone-Cěch compactification of T . Then (βT, e) is a
universal point transitive flow. It is also clear that βT is an enveloping
semigroup for X, whenever X is a flow with acting group T . Now let
M be a fixed minimal right ideal in βT . We choose a distinguished
idempotent u in M and let G denote the group Mu. Given a minimal
flowX, we choose a point x0 ∈ Xu = {xu | x ∈ X} = {x ∈ X | xu = x}.

Under the canonical map ϕ : (βT, e) → (X, x0), M is mapped onto
X and u onto x0. Thus (M,u) is a universal minimal pointed flow.

Let (X, x0) be pointed minimal set and we define the Ellis group
G(X, x0) and the quasi-Ellis group S(X, x0) as follows :

G(X, x0) = {α ∈ G | x0α = x0} ([4])

S(X, x0) = {α ∈ G | h(x0)α = x0 for some h ∈ A(X)}.
Clearly G(X, x0) ⊂ S(X, x0), and G(X, x0) is a subgroup of G.

Theorem 3.1. Let (X, x0) be a pointed minimal set. Then the fol-
lowing statements are true :

(1) S(X, x0) is a subgroup of G.
(2) G(X, x0) is a normal subgroup of S(X, x0).

Proof. (1) To see that S(X, x0) is a subgroup of G, let α1, α2 ∈
S(X, x0). Then there exist h1, h2 ∈ A(X) such that h1(x0)α1 = x0 and
h2(x0)α2 = x0 and hence h2

−1 ◦ h1(x0)α1α
−1
2 = h2

−1(h1(x0)α1)α
−1
2 =

h2
−1(x0)α

−1
2 = h2

−1(h2(x0)α2)α
−1
2 = x0. Since α1α

−1
2 ∈ G and h2

−1 ◦
h1 ∈ A(X), it follows that α1α

−1
2 ∈ S(X, x0).

(2) Let α ∈ G(X, x0) and let β ∈ S(X, x0). Then x0α = x0 and
h(x0)β = x0 for some h ∈ A(X) and hence x0(β

−1αβ) = (h(x0)β)β
−1αβ =

h(x0α)β = h(x0)β = x0. Since G is a group, it follows that β−1αβ ∈
G(X, x0). This proves that G(X, x0) is a normal subgroup of S(X, x0).

Theorem 3.2. ([4]) Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets. Then the following statements are true :

(1) G(X, x0) ⊂ G(Y, y0).
(2) G(X, x0) = G(Y, y0) if and only if π is proximal.
(3) π is distal if and only if for every y ∈ Y and p ∈ M such that

y0p = y, π−1(y) = x0G(Y, y0)p.
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Remark 3.3. The following statements are true :

(1) Let π : (X, x0) → (Y, y0) be a proximal homomorphism of pointed
minimal sets and suppose π is a constant fuction. Then G(X, x0) =
S(X, x0). To see the proof, note that if X is proximal and minimal,
then the only homomorphism η : X → X is the identity (see [3]).

(2) Suppose π : (X, x0) → (Y, y0) is an isomorphism of pointed min-
imal sets. Then S(X, x0) = S(Y, y0) as the following proof shows. For
any α ∈ S(X, x0), there exists h ∈ A(X) such that h(x0)α = x0. Since
πhπ−1(y0)α = y0 and πhπ

−1 ∈ A(Y ), it follows that S(X, x0) ⊂ S(Y, y0).
Also π−1 : (Y, y0) → (X, x0) is an isomorphism.
Thus S(Y, y0) ⊂ S(X, x0).

Theorem 3.4. Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets. Then π is regular if and only if G(Y, y0) ⊂
S(X, x0).

Proof. Suppose that π : (X, x0) → (Y, y0) is a regular homomorphism
of minimal sets and that α ∈ G(Y, y0). Let γ : (M,u) → (X, x0) and
δ : (M,u) → (Y, y0) be homomorphisms with π ◦ γ = δ. The minimality
ofM allows us to define ρ :M →M by ρ(u) = α. Also, up = uq implies
αp = αq for p, q ∈ M . This shows that ρ : (M,u) → (M,α) is a unique
homomorphism by Lemma 2.3. Since α, u ∈ G ⊂ M and G is a group,
it follows that ρ ∈ A(M). Also π ◦ γ ◦ ρ(u) = π ◦ γ(α) = π(γ(u)α) =
π(x0)α = y0α = y0 = π(x0) = π ◦ γ(u), and thus π ◦ (γ ◦ ρ) = π ◦ γ.
Since π is regular, we have from Lemma 2.5 that there exists h ∈ A(X)
such that h ◦ (γ ◦ ρ) = γ and π ◦ h = π. Hence h(x0)α = h(γ(u)α) =
h(γ(α)) = h(γ(ρ(u))) = h ◦ γ ◦ ρ(u) = γ(u) = x0 whence α ∈ S(X, x0).

Conversely suppose that γ : M → X and δ : M → X are homo-
morphisms with π◦γ = π◦δ. Then there exists η ∈ A(M) such that
δ = γ◦η by Lemma 2.3.1 in [5]. Let η(u) = α. Then y0 = π(x0)α =
π(γ(u))α = π ◦ γ ◦ η(u) = π◦δ(u) = π◦γ(u) = π(x0) = y0 and so
α ∈ G(Y, y0). Since G(Y, y0) ⊂ S(X, x0), it follows that there exists
h ∈ A(X) with h(x0)α = x0. Therefore h ◦ δ(u) = h ◦ γ◦η(u) =
h ◦ γ(α) = h(γ(u)α) = h(x0)α = x0 = γ(u) from which it follows
that h ◦ δ = γ. For any x ∈ X, pick m ∈ M with δ(m) = x. Then
π ◦ h(x) = π ◦ h ◦ δ(m) = π ◦ γ(m) = π ◦ δ(m) = π(x) whence π ◦ h = π.
This shows that π is regular with respect to itself. Consequently π is
regular.
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Corollary 3.5. Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets. If π is regular, then G(X, x0) is a normal subgroup
of G(Y, y0).

Proof. Let α ∈ G(X, x0) and let β ∈ G(Y, y0). Since π is regular, it
follows from Theorem 3.4 that G(Y, y0) ⊂ S(X, x0). Hence x0α = x0 and
h(x0)β = x0 for some h ∈ A(X). Then x0(β

−1αβ) = (h(x0)β)β
−1αβ =

h(x0α)β = h(x0)β = x0. Thus β−1αβ ∈ G(X, x0). This implies that
G(X, x0) is a normal subgroup of G(Y, y0).

Theorem 3.6. Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets and let y ∈ Y and p ∈ M such that y0p = y. If
x0G(Y, y0)p ⊂ x0J(M), then y ∈ P (y0).

Proof. Let y ∈ Y and p ∈M such that y0p = y. For each α ∈ G(Y, y0),
there exists v ∈ J(M) such that x0αp = x0v. Since α ∈ G(Y, y0),
it follows that y = y0p = y0αp = π(x0αp) = π(x0v) = y0v. Hence
y ∈ P (y0).

Theorem 3.7. ([4]) Suppose that π : (X, x0) → (Y, y0) is a homo-
morphism of pointed minimal sets and y ∈ Y and that π is proximal.
Then π−1(y) ⊂ xJ(M) for all x ∈ π−1(y).

Theorem 3.8. Suppose that π : X → Y is a homomorphism of
minimal sets and y ∈ Y and that π is regular. Then, for each x′ ∈ π−1(y),
there exists ξ ∈ A(X) such that ξ(x′) ∈ xJ(M) for all x ∈ π−1(y).

Proof. Let x, x′ ∈ π−1(y). Since π is regular, it follows that there
exists h ∈ A(X) with (h(x), x′) ∈ P (X,T ) and by Lemma 2.2 there
exists a minimal right ideal I such that x′ = h(x)v′ for some v′ ∈ J(I).
Then there exists a unique idempotent v ∈ J(M) with vv′ = v and
v′v = v′ by [2, Proposition 3.6] and hence π(h(x)v′) = π(x′) = y and
π(xv) = yv = π(h(x)v′)v = π(h(x)v′v) = π(h(x)v′) = y. Since π is
regular, we have from Lemma 2.5 that there exists ξ ∈ A(X) such that
(ξ(h(x)v′), xv) ∈ P (X,T ). But ξ(h(x))v′v = ξ(h(x))v′ and xvv = xv,
and by Lemma 2.1 ξ(h(x))v′ and xv are also almost periodic points.
Therefore ξ(x′) = ξ(h(x)v′) = xv ∈ xJ(M) by [2, Remark 5.11].

Theorem 3.9. ([4]) Let π : (X, x0) → (Y, y0) and τ : (Z, z0) → (Y, y0)
be two distal homomorphisms of pointed minimal sets. There exists a
homomorphism µ : (Z, z0) → (X, x0) if and only if G(Z, z0) ⊂ G(X, x0).
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