DOI QR코드

DOI QR Code

Large Aspheric Optics and Its Applications

대구경 비구면 광학기술과 응용

  • Lee, Yun-Woo (Center for Space Optics, Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Moon, Il Kweon (Center for Space Optics, Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Kihm, Hagyong (Center for Space Optics, Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Yang, Ho-Soon (Center for Space Optics, Division of Industrial Metrology, Korea Research Institute of Standards and Science)
  • 이윤우 (한국표준과학연구원 산업측정표준본부 우주광학센터) ;
  • 문일권 (한국표준과학연구원 산업측정표준본부 우주광학센터) ;
  • 김학용 (한국표준과학연구원 산업측정표준본부 우주광학센터) ;
  • 양호순 (한국표준과학연구원 산업측정표준본부 우주광학센터)
  • Received : 2013.05.16
  • Accepted : 2013.06.07
  • Published : 2013.06.25

Abstract

A large aspheric mirror is a key component for large astronomical telescopes and high resolution satellite cameras. Since it is large and has an aspheric form, it is much more difficult to fabricate it compared to the similar size of spherical mirror. Especially, the opto-mechanical design and analysis is critical to reduce the deformation of mirror surface due to the external forces such as gravity or temperature change, as the mirror size is larger and lightweighting ratio is increased. The design requirements for the mirror are different depending on the particular ground and space applications because the environmental conditions are changed. In this paper, we explain the opto-mechanical design and analysis for ground and space applications that are among the most difficult to achieve among several technologies related to development of the large aspheric mirror.

대구경 비구면 거울은 대형 천체 망원경이나 고해상도 위성 카메라 등에 사용하는 핵심부품이다. 일반적인 디지털 카메라와 비교하면 매우 크므로 설계 및 제작이 같은 크기의 구면거울보다 훨씬 어렵다. 특히 경량화가 많이 될수록 중력이나 온도변화와 같은 외부의 힘에 의한 변형이 쉽게 발생하기 때문에 이러한 효과를 줄여주는 광기계 설계 및 해석이 더욱 중요해진다. 지상용과 우주용은 사용 환경에 차이가 있어서 설계 요구조건이 달라지고 이에 따라 지지구조물이나 반사경의 경량화 모양 등에 많은 차이가 있다. 본 논문에서는 대구경 비구면 광학기술가운데 가장 어려운 광기계 설계에 관하여 지상용과 우주용으로 나누어 자세히 설명하고자 한다.

Keywords

References

  1. H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, "Fabrication of mirrors for the Magellan telescopes and the large binocular telescopes," Proc. SPIE 4837, 609-618 (2003).
  2. M. Cho and R. Price, "Theoretical active optics performance of the Gemini 8 m primary mirror," Gemini Project Report, RPT-O-G0032, Gemini Project Office (1993).
  3. M. T. Tuell, H. M. Martin, J. H. Burge, D. A. Ketelsen, K. Law, W. J. Gressler, and C. Zhao, "Fabrication of the LSST monolithic primary-tertiary mirror," Proc. SPIE 8450, 8450Q-1-8450Q-16 (2012).
  4. M. Cho, R. Price, and I. Moon, "Optimization of the ATST primary mirror support system," Proc. SPIE 6273, 62731E (2006).
  5. G. Schwesinger, "Lateral support of very large telescope mirrors by edge forces only," J. of Modern Optics 38, 1507-1517 (1991). https://doi.org/10.1080/09500349114551681
  6. M. Cho, "Performance prediction of the TMT secondary mirror support system," Proc. SPIE 7018, 1-13 (2008).
  7. H. M. Martin, S. P. Callahan, B. Curden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, "Active supports and force optimization for the MMT primary," Proc. SPIE 3352, 1-12 (1998).
  8. H. M. Martin, J. R. P. Angel, J. H. Burge, B. Curden, W. B. Davison, M. Johns, J. S, Kingsely, L. B. Kot, R. D. Lutz, S. M. Miller, S. A. Shectmann, P. A. Strittmatter, and C. Zhao, "Design and manufacture of 8.4 m primary mirror segments and supports for the GMT," Proc. SPIE 6273, 62730E-1-62730E-12 (2006).
  9. H. M, Martin, R. G. Allen, J. H. Burge, D. W. Kim, J. S. Kingsley, K. Law, R. D. Lutz, P. A. Strittmatter, P. Su, M. T. Tuell, S. C. West, and P. Zhau, "Production of 8.4 m segments for the giant Magellan telescope," Proc. SPIE 8450, 84502D-1-84502D-11 (2012).
  10. M. Cho, J. DeVries, and E. Hansen, "Thermal performance of the ATST secondary mirror," Proc. SPIE 6721, 672102-1-672102-11 (2007).
  11. T. Mast and J. Nelson, "The status of the W. M. Keck observatory and ten meter telescope," Proc. SPIE 571, 226-232 (1986).
  12. J. Swiegers and H. Gajjar, "Completion of the Southern African Large Telescope(SALT) primary mirror system," Proc. SPIE 5489, 881-891 (2004).
  13. D. A. H. Buckley, J. G. Meiring, J. Swiegers, and G. Swart, "Many segments and a few dollars: SALT solutions for ELTs," Proc. SPIE 5382, 245-256 (2004).
  14. D. Blanco, G. Pentland, E. G. Winrow, K. Rebeske, J. Swiegers, and K. G. Meiring, "The SALT mirror mount : a high performance, low cost mount for segmented mirrors," Proc. SPIE 4840, 527-532 (2003).
  15. M. Cho, L Stepp, and S. Kim, "Wind buffeting effects on the Gemini 8 m primary mirrors," Proc. SPIE 4444, 302-314 (2001).
  16. V. L. Genberg, "Optical performance criteria in optimum structural design," Proc. SPIE 3786, 248-255 (1999).
  17. L. E. Cohan and D. W. Miller, "Integrated modeling for design of lightweight, active mirrors," Opt. Eng. 50, 063003-1-063003-13 (2011). https://doi.org/10.1117/1.3592520
  18. H. Kihm, H.-S. Yang, I.-K. Moon, and Y.-W. Lee, "Athermal elastomeric lens mount for space optics," J. Opt. Soc. Korea 13, 201-205 (2009). https://doi.org/10.3807/JOSK.2009.13.2.201
  19. P. Hartmann, K. Nattermann, T. Doehring, M. Kuhr, P. Thomas, G. Kling, P. Gath, and S. Lucarelli, "Strength aspects for the design of ZERODUR glass ceramics structures," Proc. SPIE 6666, 666603-1-12 (2007).
  20. T. Westerhoff, M. Schafer, A. Thomas, M. Weissenburger, T. Werner, and A. Werz, "Manufacturing of the ZERODUR 1.5-m primary mirror for the solar telescope GREGOR as preparation of light weighting of blanks up to 4-m diameter," Proc. SPIE 7739, 77390M-1-9 (2010).
  21. P. Hartmann, K. Nattermann, T. Dohring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, and S. Lucarelli, "ZERODUR(R) glass ceramics for high stress applications," Proc. SPIE 7425, 74250M-1-11 (2009).
  22. Z. Wei and Y. Yi, "Design of lightweight mirror based on genetic algorithm," Proc. SPIE 6148, 61480T-1-6 (2006).
  23. F. Zhao, P. Wang, Y. Gong, L. Zhang, and J. Lin, "Optimization design for the supporting system of 2m telescope primary mirror," Proc. SPIE 7156, 71561T-1-8 (2008).
  24. M. Kurita, H. Ohmori, M. Kunda, H. Kawamura, N. Noda, T. Seki, Y. Nishimura, M. Yoshida, S. Sato, and T. Nagata, "Light-weight telescope structure optimized by genetic algorithm," Proc. SPIE 7733, 77333E-1-11 (2010).
  25. H. Kihm, H.-S. Yang, I. K. Moon, J.-H. Yeon, S.-H. Lee, and Y.-W. Lee, "Adjustable bipod flexures for mounting mirrors in a space telescope," Appl. Opt. 51, 7776-7783 (2012). https://doi.org/10.1364/AO.51.007776
  26. H. Kihm and Y.-W. Lee, "Optimization and tolerance scheme for a mirror mount design based on optomechanical performance," J. Korean Phys. Soc. 57, 440-445 (2010). https://doi.org/10.3938/jkps.57.440
  27. H. J. Kramer, "KOMPSAT-3(KoreaMulti-Purpose Satellite-3)/Arirang-3," https://directory.eoportal.org/web/eoportal/satellite-missions/k/kompsat-3 (3 May, 2013).
  28. H. Ducollet, C. D. Jeu, and S.-H. Lee, "Manufacturing of the spaceborne camera mirrors for KARI's LEO satellite," Proc. International Conference on Space Optics, 1-4 (2010).
  29. H. Kihm and H.-S. Yang, "Design optimization of a 1-m lightweight mirror for a space telescope," Opt. Eng. 52, 091806-1-9 (2013). https://doi.org/10.1117/1.OE.52.9.091806
  30. P. R. Yoder Jr., "Mounting large, horizontal-axis mirrors," in Opto-mechanical Systems Design (SPIE, 2006), pp. 481-502.
  31. E. E. Bloemhof, J. C. Lam, V. A. Feria, and Z. Chang, "Extracting the zero-gravity surface figure of a mirror through multiple clockings in a flightlike hexapod mount," Appl. Opt. 48, 4239-4245 (2009). https://doi.org/10.1364/AO.48.004239
  32. ECSS-E-32-10C-Rev. 1, Space Engineering-structural Factors of Safety for Space Flight Hardware (March, 2009).
  33. NASA-STD-5001A, Structural Design and Test Factors of Safety for Spaceflight Hardware (May, 2008).
  34. K. B. Doyle, V. L. Genberg, and G. J. Michels, "Lightweight mirror models," in Integrated Optomechanical Analysis (SPIE, 2002), pp. 70-85.
  35. R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd ed. (WILEY, New York, USA, 2004).
  36. A. E. Hatheway, "Analysis of adhesive bonds in optics," Proc. SPIE 1998, 2-8 (1993).
  37. G. J. Michels, V. L. Genberg, and K. B. Doyle, "Finite element modeling of nearly incompressible bonds," Proc. SPIE 4771, 287-295 (2002).
  38. K. B. Doyle, V. L. Genberg, and G. J. Michels, "Displacement models of adhesive bonds," in Integrated Optomechanical Analysis (SPIE, 2002), pp. 86-98.
  39. D. Malacara, "Zernike polynomials and wavefront fitting," in Optical Shop Testing (Wiley, 2007), pp. 498-545.

Cited by

  1. Study of an Aspherical Lens Design Method for Removing the Spherical Aberration of a Human Eye vol.26, pp.6, 2015, https://doi.org/10.3807/KJOP.2015.26.6.299