DOI QR코드

DOI QR Code

Chemorheological Behavior of Cyanate Ester Resin and Properties of Carbon Fiber Reinforced Polymer Composites

시아네이트 에스터 수지의 화학유변학적 거동 및 탄소섬유강화 고분자 복합재료의 물성

  • Na, Hyo Yeol (Department of Polymer Engineering, The University of Suwon) ;
  • Yoon, Byung Chul (Muhan Composite Co. LTD.) ;
  • Kim, Seung Hwan (Kemidas Technologies INC., Business Incubation Center, The University of Suwon) ;
  • Lee, Seong Jae (Department of Polymer Engineering, The University of Suwon)
  • Received : 2013.01.09
  • Accepted : 2013.02.28
  • Published : 2013.06.30

Abstract

Carbon fiber reinforced polymer (CFRP) composites consist of carbon fibers in a polymer matrix. Recently, CFRP composites having high thermal stability and low outgassing are finding their use in high performance materials for aerospace and electronics applications under high temperature and high vacuum conditions. Cyanate ester resin is one of the most suitable matrix resins for this purpose. In this study, proper combination of cyanate ester and catalyst, curing behavior, and cure cycle were determined by chemorheology. Optimum condition was found to be catalyst content of 100 ppm and curing temperature of $150^{\circ}C$. Thermal stability and outgassing of cured resin composition were analyzed and the results showed thermal decomposition temperature of $385^{\circ}C$ and total mass loss of 0.29%. The CFRP prepregs and subsequent composites were fabricated by predetermined resin composition and the cure condition. Tensile moduli of the composites were compared with theoretical models and the results were very consistent.

탄소섬유강화 고분자(CFRP) 복합재료는 고분자 매트릭스 내에 탄소섬유를 강화제로 사용한 복합재료이다. 최근 고온 및 고진공 조건이 요구되는 항공우주 및 전자산업용 고성능 재료로 사용하기 위해 높은 열안정성과 낮은 기체방출 특성을 갖는 CFRP 복합재료가 활용되고 있다. 이러한 용도에 시아네이트 에스터 수지는 가장 적합한 매트릭스 수지로 꼽히고 있다. 본 연구에서는 시아네이트 에스터 수지와 촉매의 조합, 경화 거동 및 경화 사이클을 최적화하기 위해 화학유변학적 거동을 분석하였다. 최적 조건은 촉매 100 ppm을 첨가한 수지 조성물을 $150^{\circ}C$에서 경화한 경우로 나타났다. 열안정성과 기체방출 특성을 분석한 결과 경화된 수지 조성물은 열분해 온도 $385^{\circ}C$ 및 전체질량손실 0.29%를 나타내었다. 설정한 수지 조성 및 경화 조건을 사용하여 CFRP 프리프레그 및 이를 적층한 복합재료를 제조하였다. 복합재료의 인장 탄성률을 이론적 모델과 비교한 결과 매우 일관성이 있었다.

Keywords

References

  1. P. Ren, G. Liang, and Z. Zhang, "Epoxy-modified cyanate ester resin and its high modulus carbon-fiber composites" , Polym. Compos., 27, 402 (2006). https://doi.org/10.1002/pc.20207
  2. J. K. Kim, C. Hu, R. S. C. Woo, and M. L. Sham, "Moisture barrier characteristics of organoclay-epoxy nanocomposites" , Compos. Sci. Tech., 65, 805 (2004).
  3. B. C. Ray, "Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites," J. Colloid Interface Sci., 298, 111 (2006). https://doi.org/10.1016/j.jcis.2005.12.023
  4. S. Ganguli, D. Dean, K. Jordan, G. Price, and R. Vaia, "Mechanical properties of intercalated cyanate ester-layered silicate nanocomposites", Polymer, 44, 1315 (2003). https://doi.org/10.1016/S0032-3861(02)00709-7
  5. S. L. Simon and J. K. Gillham, "Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material", J. Appl. Polym. Sci., 47, 461 (1993). https://doi.org/10.1002/app.1993.070470308
  6. A. J. Kinloch and A. C. Taylor, "The toughening of cyanate ester polymers, Part I. Physical modification using particles, fibres and woven-mats", J. Mater. Sci., 37, 433 (2002). https://doi.org/10.1023/A:1013735103120
  7. K. Liang, G. Li, H. Toghiani, J. H. Koo, and C. U. Pittman, "Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: synthesis and characterization", Chem. Mater., 18, 301 (2006). https://doi.org/10.1021/cm051582s
  8. B. J. Frame, "Characterization and process development of cyanate ester resin composites", 44th International SAMPE Symposium, 2081 (1999).
  9. W. K. Goertzen and M. R. Kessler, "Thermal and mechanical evaluation of cyanate ester composites with low-temperature processability", Composites: Part A., 38, 779 (2007). https://doi.org/10.1016/j.compositesa.2006.09.005
  10. P. Badrinarayanan, M. K. Rogalski, and M. R. Kessler, "Carbon fiber-reinforced cyanate ester/nano-$ZrW_2O_8$ composites with tailored thermal expansion", Appl. Mater. Interfaces, 4, 510 (2011).
  11. F. Abali, K. Shivakumar, N. Hamidi, and R. Sadler, "An RTM densification method of manufacturing carbon-carbon composites using Primaset PT-30 resin", Carbon, 41, 893 (2003). https://doi.org/10.1016/S0008-6223(02)00434-7
  12. K. Shivakumar, H. Chen, and G. Holloway, "Gas turbine environment effect on morphology and mechanical properties of pultruded composite", J. Appl. Polym. Sci., 108, 189 (2008). https://doi.org/10.1002/app.27551
  13. T. G. Mezger, "The Rheology Handbook", 2nd ed., p. 161, Vincentz, Hannover, 2009.
  14. C. Michon, G. Cuvelier, and B. Launay, "Concentration dependence of the critical viscoelastic properties of gelatin at the gel point", Rheol. Acta, 32, 94 (1993). https://doi.org/10.1007/BF00396681
  15. W. D. Callister and D. G. Rethwisch, "Fundamentals of Materials Science and Engineering", 4th ed., p. 660, Wiley, Singapore, 2013.
  16. M. R. Kessler, "Cyanate Ester Resins" in Encyclopedia of Composites, ed. by L. Nicolais, A. Borzacchiello, and S. M. Lee, 2nd ed., p. 658, Wiley, New Jersey, 2012.

Cited by

  1. Prediction of Mechanical Property of Glass Fiber Reinforced Polycarbonate and Evaluation of Warpage through Injection Molding vol.38, pp.6, 2014, https://doi.org/10.7317/pk.2014.38.6.708