DOI QR코드

DOI QR Code

비등온 TGA를 이용한 ACM 고무복합재료의 열분해 거동 연구

Non-isothermal TGA Study on Thermal Degradation Kinetics of ACM Rubber Composites

  • 안원술 (계명대학교 화학공학과) ;
  • 이형석 (한국씰텍(주) 기술연구소)
  • 투고 : 2013.04.23
  • 심사 : 2013.05.15
  • 발행 : 2013.06.30

초록

비등온 TGA 실험방법을 이용하여 가교 사이트가 서로 다른 chlorine cure-site ACM 고무와 carboxylic cure-site ACM 고무 두 종류에 대하여 열분해 거동을 연구하였다. 분해 반응이 최대인 점의 온도는 모든 승온 속도에서 carboxylic cure-site ACM 고무의 열분해 특성이 상대적으로 더 안정함을 보여 주었다. Kissinger의 해석 방법에 의한 활성화에너지는 chlorine cure-site ACM 및 carboxylic cure-site ACM 고무에 대하여 각각 118.6 및 105.5 kJ/mol로 나타났으며, Flynn-Wall-Ozawa의 해석방법에서의 전환율 0.1~0.2 범위의 평균과 유사한 값을 나타내었다. 반응차수 해석으로부터 두 시험편 모두 일반적인 고무와 유사한 다중 복합반응에 의하여 열분해 반응이 진행됨을 알 수 있었다.

Thermal degradation behavior of chlorine cure-site ACM and carboxylic cure-site ACM rubbers was studied by non-isothermal TGA thermal analysis. Carboxylic cure-site ACM rubber exhibited comparatively more thermally stable than chlorine cure-site ACM, showing higher peak temperature, at which maximum reaction rate occurred. Activation energies from Kissinger method were calculated as 118.6 kJ/mol for the chlorine cure-site ACM and 105.5 kJ/mol for the carboxylic cure-site ACM, showing similar values from Flynn-Wall-Ozawa analysis over the conversion range of 0.1~0.2. From the analysis of the reaction order change, both samples seemed thermally decomposed through the multiple reaction mechanism as is the common rubber materials.

키워드

참고문헌

  1. R. C. Klingender, ed. "Handbook of Specialty Polymers", Ch. 5., CRC Press, N.Y., 2008.
  2. I. S. Huh, "Engine Gasket Materials and Property Evaluation" , Rubber Technol., 1, 78 (2000).
  3. H. S. Lee, J. H. Do, W. Ahn, and C. Kim, "A Study on Physical Properties and Life Time Prediction on ACM Rubber for Automotive Engine Gasket", Elast. Compos. 47(3), 254 (2012). https://doi.org/10.7473/EC.2012.47.3.254
  4. J. S. Dick, ed. "Rubber Technology, Compounding and Testing for Performance", Ch. 8, Carl Hanser Verlag, Munich, 2010.
  5. W. D. Kim, W. S. Kim, C. S. Woo, and S. J. Cho, "Prediction of Useful Life by Heat Ageing of Motor Fan Isolating Rubber", Elastomer, 37, 107 (2002).
  6. TOA Acron, AR-501, 501L, AR540, AR540L Heat and Oil Resistance Polyacrylate Elastomer Bulletin.
  7. D. J. Toop, "Theory of Life Testing and Use of Thermogravimetric Analysis to Predict the Thermal Life of Wire Enamels", IEEE Trans. Elec. Insul., E1-6, 2 (1971).
  8. J. Wise, K. T. Gillen and R. L. Clough, "An ultra sensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers", Polym. Degard. Stab., 49, 403 (1995). https://doi.org/10.1016/0141-3910(95)00137-B
  9. L. W. McKeen. "The Effect of Temperature and Other Factors on Plastics and Elastomers", 2nd ed., Ch. 7, William Andrew Inc., N.Y., 2008.
  10. W. S. Ahn and K. H. Park. "A Study on Thermal Life-Time Expectation of NR Rubber Material using Isothermal TGA and TMA", Elast. Compos. 44(3), 269 (2009).
  11. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", Anal. Chem. 29, 1702 (1957). https://doi.org/10.1021/ac60131a045
  12. J. H. Flynn and L. A. Wall, "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data", J. Polym. Sci., Part B: Polym. Lett., 4, 323 (1966). https://doi.org/10.1002/pol.1966.110040504
  13. R. M. B. Moreno, E. S. de Medeiros, F. C. Ferreira, N. Alves, P. S. Goncalves, and L. H. C. Mattoso1, "Thermogravimetric studies of decomposition kinetics of six different IAC Hevea rubber clones using Flynn-Wall-Ozawa approach", Plastics, Rubber and Composites, 35(1), 15 (2006). https://doi.org/10.1179/174328906X79932
  14. J. I. Cunneen "Degradation of natural rubber during manufacture, storage and service", Proc. NR technology seminar, 4-5 December, 199 (1978).
  15. R. L. Feller, "Accelerated Aging: Photochemical and Thermal Aspects", Marina del Rey, CA, Getty Conservation Institute, (1994).