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Amphidinolide O (1) was isolated from the laboratory
cultured Okinawan marine dinoflagelate amphidinolium sp.
by Kobayashi ez al.,! and shows in vitro cytotoxicity against
murine lymphoma L1210 (ICso = 1.7 mg/mL) and human
epidermoid carcinoma KB cells (ICsp = 1.6 mg/mL). Amphi-
dinolide O (1) is a medium-sized macrolide with unusual
structural features such as seven chiral centers, C5 exo-
methylene double bond and six-membered ring bridge with
hemiacetal moiety.” We already published several papers
concerning the synthesis of amphidinolide O (1), and total
synthesis of 1 was not reported yet by any other group.’> We
describe herein the enantioselective synthesis of C3-C8
fragment of amphidinolide O (1).

Retrosynthetic analysis was described in Figure 1. Amphi-
dinolide O (1) might be assembled from two intermediates 2
and 3 via esterification and ring closing metathesis as key
steps. Intermediate 4, a precursor to 3 as well as the target
molecule in this paper, involves the yJ-unsaturated ester
moiety along with ¢, fchiral substituents with anti-stereo-
chemical relationship. Those structural features could be
available by Ireland-Claisen rearrangement of the corre-
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Figure 1. Retrosynthetic analysis.

sponding (E)-enolate derived from the propionate ester 5.
The ester 5 was prepared from the commercially available L-
(—)-malic acid.

The synthesis of the allyl alcohol 10 was summarized in
Scheme 1. Two carboxylic acid moieties of L-malic acid was
reduced easily by borane-dimethyl sulfide complex to pro-
duce 1,2,4-butanetriol 6, and selective protection of 1,3-diol
moiety over the 1,2-diol moiety was performed successfully
by reaction with benzaldehyde dimethyl acetal and PPTS in
82% two-step yield.* After the primary alcohol 7 was oxidiz-
ed using Swern protocol,’ the resulting aldehyde 8 was sub-
jected to Horner-Wadsworth-Emmons olefination reaction to
provide the conjugated ester 9 in 67% two-step yield.® The
ethyl ester 9 was then reduced by DIBAL-H at —78 °C to
give the primary allyl alcohol 10 in 82% yield.

Synthesis of ester 4 was completed via 6-step sequence
from allyl alcohol 10 (Scheme 2). The primary alcohol 10
was treated with p-methoxybenzyl chloride and sodium
hydride to afford the PMB ether 11 in 98% yield. The acetal
moiety of 11 was removed quantitatively by CSA in aqueous
methanol and the primary hydroxyl group of the resulting
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Scheme 1. Synthesis of allyl alcohol 10.
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Scheme 2. Synthesis of methyl ester 4.

diol 12 was protected selectively using TBSCI-TEA combi-
nation to provide the secondary alcohol 13 in 87% yield. The
intermediate 5, a key precursor for the Ireland-Claisen rear-
rangement,” was prepared by reaction of 13 with propionyl
chloride, TEA, and DMAP in 64% yield.

Two chiral centers in 14 were installed from the C7 chiral
center in 5 via Ireland-Claisen rearrangement. In other words,
intermediate 5 was treated with LIHMDS and TBSCI in
THF at —78 °C to give the (F)-enolate selectively, which
undergoes Claisen rearrangement stereoselectively at room
temperature to afford the carboxylic acid 14 with the correct
relative stereochemistries in 67% yield.” Finally, the methyl
ester 4 was prepared by methylation of the corresponding
carboxylate with iodomethane and potassium carbonate in
83% yield.®

The relative configuration of the methyl ester 4 was con-
firmed as follows. Treatment of 4 with DDQ in a biphasic
mixture of pH 7 buffer solution and CH,Cl, allowed the
deprotection of the PMB protecting group and spontaneous
cyclization to the lactone 15. The "H-NOE experiment clear-
ly showed the relative stereochemistry of 15, and therefore
the methyl ester 4 as drawn in Scheme 2 and 3.

In summary, the methyl ester 4, a C3-C8 fragment of am-
phidinolide O (1), was prepared enantioselectively via 11
steps in 14% overall yields. The diastereoselective Ireland-
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Scheme 3. Synthesis of lactone 15.

Claisen rearrangement of 5 via the corresponding (£)-enolate
intermediate was used as a key step in order to implement
the C4 and CS5 chiral centers.
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