DOI QR코드

DOI QR Code

Salicylimine-Based Colorimetric and Fluorescent Chemosensor for Selective Detection of Cyanide in Aqueous Buffer

  • Noh, Jin Young (Department of Fine Chemistry, Seoul National University of Science and Technology) ;
  • Hwang, In Hong (Department of Fine Chemistry, Seoul National University of Science and Technology) ;
  • Kim, Hyun (Department of Fine Chemistry, Seoul National University of Science and Technology) ;
  • Song, Eun Joo (Department of Fine Chemistry, Seoul National University of Science and Technology) ;
  • Kim, Kyung Beom (Department of Fine Chemistry, Seoul National University of Science and Technology) ;
  • Kim, Cheal (Department of Fine Chemistry, Seoul National University of Science and Technology)
  • Received : 2013.03.20
  • Accepted : 2013.04.02
  • Published : 2013.07.20

Abstract

A simple colorimetric and fluorescent anion sensor 1 based on salicylimine showed a high selectivity and sensitivity for detection of cyanide in aqueous solution. The receptor 1 showed high selectivity toward $CN^-$ ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to orange and a dramatic enhancement in fluorescence intensity selectively for cyanide anions over other anions. Such selectivity resulted from the nucleophilic addition of $CN^-$ to the carbon atom of an electron-deficient imine group. The sensitivity of the fluorescence-based assay (0.06 ${\mu}M$) is below the 1.9 ${\mu}M$ suggested by the World Health Organization (WHO) as the maximum allowable cyanide concentration in drinking water, capable of being a practical system for the monitoring of $CN^-$ concentrations in aqueous samples.

Keywords

References

  1. Miller, C. Nature 2006, 440, 484. https://doi.org/10.1038/nature04713
  2. Dutzler, R.; Campbell, E. B.; Mackinnon, R. Science 2003, 300, 108. https://doi.org/10.1126/science.1082708
  3. Dutzler, R.; Campbell, E. B.; Cadene, M.; Chait, B. T.; Mackinnon, R. Nature 2002, 415, 287. https://doi.org/10.1038/415287a
  4. Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486. https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
  5. Vennesland, B.; Comm, E. E.; Knownles, C. J.; Westly, J.; Wissing, F. Cyanide in Biology; Academic Press: London, 1981.
  6. Kulig, K. W. Cyanide Toxicity; U.S. Department of Health and Human Services: Atlanta, GA, 1991.
  7. Baird, C.; Cann, M. Environmental Chemistry; New York, Freeman: 2005.
  8. Hachiya, H.; Ito, S.; Fushinuki, Y.; Masadome, T.; Asano, Y.; Imato, T. Talanta 1999, 48, 997. https://doi.org/10.1016/S0039-9140(98)00314-2
  9. Ullmann's Encyclopedia of Industrial Chemistry, 6th ed.; Wiley-VCH: New York, 1999.
  10. Koenig, R. Science 2000, 287, 1737. https://doi.org/10.1126/science.287.5459.1737
  11. Young, C.; Tidwell, L.; Anderson, C. Cyanide: Social, Industrial and Economic Aspects: Minerals, Metals, and Materials Society, Warrendale, 2001.
  12. Sun, H.; Zhang, Y. Y.; Si, S. H.; Zhu, D. R.; Fung, Y. S. Sens. Actuators B 2005, 108, 925. https://doi.org/10.1016/j.snb.2004.12.120
  13. Odago, M. O.; Colabello, D. M.; Lees, A. J. Tetrahedron 2010, 66, 7464.
  14. Kim, D. S.; Ahn, K. H. J. Org. Chem. 2008, 73, 6831. https://doi.org/10.1021/jo801178y
  15. Tomasolu, M.; Raymo, F. M. Org. Lett. 2005, 7, 4633. https://doi.org/10.1021/ol051750m
  16. Xu, Z.; Pan, J.; Spring, D. R.; Cui, J.; Yoon, J. Tetrahedron 2010, 66, 1678. https://doi.org/10.1016/j.tet.2010.01.008
  17. Niu, H. T.; Jiang, X.; He, J.; Cheng, J. P. Tetrahedron Lett. 2009, 50, 6668. https://doi.org/10.1016/j.tetlet.2009.09.079
  18. Chen, X.; Nam, S. W.; Kim, G. H.; Song, N.; Jeong, Y.; Shin, I.; Kim, S. K.; Kim, J.; Park, S.; Yoon, J. Chem. Commun. 2010, 46, 8953. https://doi.org/10.1039/c0cc03398g
  19. Tomasulo, M.; Sortino, S.; White, A. J. P.; Raymo, F. M. J. Org. Chem. 2006, 71, 744. https://doi.org/10.1021/jo052096r
  20. Ajayaghosh, A. Acc. Chem. Res. 2005, 38, 449. https://doi.org/10.1021/ar0401000
  21. Abalos, T.; Royo, S.; Martinez-Manez, R.; Sancenon, F.; Soto, J.; Costero, A. M.; Gil, S.; Parra, M. New J. Chem. 2009, 33, 1641. https://doi.org/10.1039/b909705h
  22. Kim, S. H.; Hong, S. J.; Yoo, J.; Kim, S. K.; Sessler, J. L.; Lee, C. H. Org. Lett. 2009, 11, 3626. https://doi.org/10.1021/ol901361h
  23. Lee, J. H.; Jeong, A. R.; Shin, I. S.; Kim, H. J.; Hong, J. I. Org. Lett. 2010, 12, 764. https://doi.org/10.1021/ol902852g
  24. Martinez-Manez, R.; Sancenon, F. Coord. Chem. Rev. 2006, 250, 3081. https://doi.org/10.1016/j.ccr.2006.04.016
  25. Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094. https://doi.org/10.1016/j.ccr.2006.08.017
  26. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  27. Shao, J.; Lin, H.; Yu, M.; Cai, Z. S.; Lin, H. K. Talanta 2008, 75, 551. https://doi.org/10.1016/j.talanta.2007.11.048
  28. Gentili, P. L. Chem. Phys. 2007, 336, 64. https://doi.org/10.1016/j.chemphys.2007.05.013
  29. Zeng, Q.; Cai, P.; Li, Z.; Qin, J.; Tang, B. Z. Chem. Commun. 2008, 1094.
  30. Chow, C. F.; Lamand, M. H. W.; Wong, W. Y. Inorg. Chem. 2004, 43, 8387. https://doi.org/10.1021/ic0492587
  31. Kim, Y. H.; Hong, J. I. Chem. Commun. 2002, 512.
  32. Shang, L.; Jin, L. H.; Dong, S. J. Chem. Commun. 2009, 3077.
  33. Park, I. S.; Heo, E. J.; Kim, J. M. Tetrahedron Lett. 2011, 52, 2454. https://doi.org/10.1016/j.tetlet.2011.02.105
  34. Anzenbacher, P., Jr.; Tyson, D. S.; Jursikova, K.; Castellano, F. N. J. Am. Chem. Soc. 2002, 124, 6232. https://doi.org/10.1021/ja0259180
  35. Gimeno, N.; Li, X.; Durrant, J. R.; Vilar, R. Chem. Eur. J. 2008, 14, 3006. https://doi.org/10.1002/chem.200700412
  36. Miyaji, H.; Sessler, J. L. Angew. Chem. 2001, 113, 158. https://doi.org/10.1002/1521-3757(20010105)113:1<158::AID-ANGE158>3.0.CO;2-J
  37. Chen, C.-L.; Chen, Y.-H.; Chen, C.-Y.; Sun, S.-S. Org. Lett. 2006, 8, 5053. https://doi.org/10.1021/ol061969g
  38. Ros-Lis, J. V.; Martinez-Manez, R.; Soto, J. Chem. Commun. 2002, 2248.
  39. Lee, K. S.; Kim, H. J.; Kim, G. H.; Shin, I.; Hong, J. I. Org. Lett. 2008, 10, 49. https://doi.org/10.1021/ol7025763
  40. Chung, Y.; Lee, H.; Ahn, K. H. J. Org. Chem. 2006, 71, 9470. https://doi.org/10.1021/jo061798t
  41. Miyaji, H.; Kim, D. S.; Chang, B. Y.; Park, E.; Park, S. M.; Ahn, K. H. Chem. Commun. 2008, 753.
  42. Tomasulo, M.; Sortino, S.; White, A. J. P.; Raymo, F. M. J. Org. Chem. 2006, 71, 744. https://doi.org/10.1021/jo052096r
  43. Garcia, F.; Garcia, J. M.; Garcia-Acosta, B.; Martinez-Manez, R.; Sancenon, F.; Soto, J. Chem. Commun. 2005, 2790.
  44. Tomasulo, M.; Sortino, S.; White, A. J. P.; Raymo, F. M. J. Org. Chem. 2005, 70, 8180. https://doi.org/10.1021/jo051417w
  45. Hudnall, T. W.; Gabbai, F. P. J. Am. Chem. Soc. 2007, 129, 11978. https://doi.org/10.1021/ja073793z
  46. Yang, Y. K.; Tae, J. Org. Lett. 2006, 8, 5721. https://doi.org/10.1021/ol062323r
  47. Cho, D. G.; Kim, J. H.; Sessler, J. L. J. Am. Chem. Soc. 2008, 130, 12163. https://doi.org/10.1021/ja8039025
  48. Jo, J.; Lee, D. J. Am. Chem. Soc. 2009, 131, 16283. https://doi.org/10.1021/ja907056m
  49. Yuan, L.; Lin, W.; Yang, Y.; Song, J.; Wang, J. Org. Lett. 2011, 13, 3730. https://doi.org/10.1021/ol2013928
  50. Wu, X.; Xu, B.; Tong, H.; Wang, L. Macromolecules 2011, 44, 4241. https://doi.org/10.1021/ma2005684
  51. Afkhami, A.; Sarlak, N. Sens. Actuators B 2007, 122, 437. https://doi.org/10.1016/j.snb.2006.06.012
  52. Hong, S. J.; Lee, C. H. Tetrahedron Lett. 2012, 53, 3119. https://doi.org/10.1016/j.tetlet.2012.04.005
  53. Yang, Z.; Liu, Z.; Chen, Y.; Wang, X.; He, W.; Lu, Y. Org. Biomol. Chem. 2012, 10, 5073. https://doi.org/10.1039/c2ob25516b
  54. Lv, X.; Liu, J.; Liu, Y.; Zhao, Y.; Chen, M.; Wang, P.; Guo, W. Org. Biomol. Chem. 2011, 9, 4954. https://doi.org/10.1039/c1ob05387f
  55. Ding, Y.; Li, T.; Zhu, W.; Xie, Y. Org. Biomol. Chem. 2012, 10, 4201. https://doi.org/10.1039/c2ob25297j
  56. Lee, H.; Chung, Y. M.; Ahn, K. H. Tetrahedron Lett. 2008, 49, 5544. https://doi.org/10.1016/j.tetlet.2008.07.065
  57. Niu, H. T.; Jiang, X.; He, J.; Cheng, J. P. Tetrahedron Lett. 2008, 49, 6521. https://doi.org/10.1016/j.tetlet.2008.08.115
  58. Kim, S.; Noh, J. Y.; Kim, K. Y.; Kim, J. H.; Kang, H. K.; Nam, S.-W.; Kim, S. H.; Park, S.; Kim, C.; Kim, J. Inorg. Chem. 2012, 51, 3597. https://doi.org/10.1021/ic2024583
  59. Prabhu, S.; Saravanamoorthy, S.; Ashok, M.; Velmathi, S. J. Luminescence 2012, 132, 979. https://doi.org/10.1016/j.jlumin.2011.09.051
  60. Sun, Y.; Liu, Y.; Chen, M.; Guo, W. Talanta 2009, 80, 996. https://doi.org/10.1016/j.talanta.2009.08.026
  61. Kim, Y.-J.; Kwak, H.; Lee, S. J.; Lee, J. S.; Kwon, H. J.; Nam, S. H.; Lee, K.; Kim, C. Tetrahedron 2006, 62, 9635. https://doi.org/10.1016/j.tet.2006.07.081
  62. Kang, J.; Song, E. J.; Kim, H.; Kim, Y.-H.; Kim, Y.; Kim, S.-J.; Kim, C. Tetradedron Lett. 2013, 54, 1015. https://doi.org/10.1016/j.tetlet.2012.12.053
  63. Kang, J.; Jang, S. P.; Kim, Y.-H.; Lee, J. H.; Park, E. B.; Lee, H. G.; Kim, J. H.; Kim, Y.; Kim, S.-J.; Kim, C. Tetrahedron Lett. 2010, 51, 6658. https://doi.org/10.1016/j.tetlet.2010.10.058
  64. Park, J. J.; Kim, Y.-H.; Kim, C.; Kang, J. Tetrahedron Lett. 2011, 52, 2759. https://doi.org/10.1016/j.tetlet.2011.03.092
  65. Kang, J.; Lee, Y. J.; Lee, S. K.; Lee, J. H.; Park, J. J.; Kim, Y.; Kim, S.-J.; Kim, C. Supramol. Chem. 2010, 22, 267. https://doi.org/10.1080/10610270903449973
  66. Hijji, Y. M.; Barare, B.; Kennedy, A. P.; Butcher, R. Sens. Actuators B 2009, 136, 297. https://doi.org/10.1016/j.snb.2008.11.045
  67. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703. https://doi.org/10.1021/ja01176a030
  68. Job, P. Ann. Chim. 1928, 9, 113.
  69. Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 7831. https://doi.org/10.1021/ja010059l
  70. Tsui, Y.-K.; Devaraj, S.; Yen, Y.-P. Sens. Actuators B 2012, 161, 510. https://doi.org/10.1016/j.snb.2011.10.069
  71. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, 1996.

Cited by

  1. A colorimetric chemosensor based on a Schiff base for highly selective sensing of cyanide in aqueous solution: the influence of solvents vol.38, pp.12, 2014, https://doi.org/10.1039/C4NJ01199F
  2. Voltammetry of nanoparticle-coupled imine linkage-based receptors for sensing of Al(III) and Co(II) ions vol.44, pp.11, 2014, https://doi.org/10.1007/s10800-014-0746-3
  3. A new Dual-Channel Chemosensor Based on Chemodosimeter Approach for Detecting Cyanide in Aqueous Solution: a Combination of Experimental and Theoretical Studies vol.25, pp.5, 2015, https://doi.org/10.1007/s10895-015-1635-9
  4. Colorimetric Cyanide Chemosensor Based on an Amide-Pyrene Moiety: Experimental and Theoretical Studies vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10534
  5. by a Simple Colorimetric Chemosensor with High Selectivity vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10307
  6. A highly selective colorimetric and “Off–On” fluorescent chemosensor for fluoride ions and its application as a molecular-scale logic device vol.39, pp.11, 2015, https://doi.org/10.1039/C5NJ00918A
  7. vol.39, pp.5, 2015, https://doi.org/10.1039/C5NJ00169B
  8. Synthesis and spectral, antimicrobial, anion sensing, and DNA binding properties of Schiff base podands and their metal complexes vol.85, pp.9, 2015, https://doi.org/10.1134/S1070363215090200
  9. A highly selective colorimetric chemosensor for cyanide and sulfide in aqueous solution: experimental and theoretical studies vol.40, pp.9, 2016, https://doi.org/10.1039/C6NJ01832G
  10. A colorimetric F− chemosensor with high selectivity: experimental and theoretical studies vol.86, pp.1-2, 2016, https://doi.org/10.1007/s10847-016-0646-8
  11. ions in aqueous media: mimicking multiple molecular logic gates and memory devices vol.42, pp.3, 2018, https://doi.org/10.1039/C7NJ04216G
  12. Electronically-tuned 2-(2′-Hydroxyphenyl)-4-pyrenylthiazole through Bond Energy Transfer Donor-Acceptor Couples: Sensing and Biological Applications pp.12295949, 2018, https://doi.org/10.1002/bkcs.11617
  13. based on photochromic diarylethene with a triazole-bridged coumarin-quinoline group vol.8, pp.40, 2018, https://doi.org/10.1039/C8RA03443E
  14. Experimental, DFT Calculation, Biological Activity, Anion Sensing Application Studies and Crystal Structure of (E)-4-[(pyridin-3-ylimino)methyl]benzene-1,3-diol vol.48, pp.1-2, 2018, https://doi.org/10.1007/s10870-018-0710-x
  15. Azo linked thiourea based effective dual sensor and its real samples application in aqueous medium vol.209, pp.None, 2013, https://doi.org/10.1016/j.snb.2014.11.139
  16. Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3,5-bis(triflouromethyl)aniline and salicy vol.1094, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2015.03.047
  17. A Novel Di(6‐aminouracil‐5‐yl)‐arylmethane Derivative as Fluorescence Ratiometric Chemodosimeter for Mercury Detection in Aqueous Solution vol.1, pp.14, 2013, https://doi.org/10.1002/slct.201600928
  18. Colorimetric chemosensor for multiple targets, Cu2+, CNand S2− vol.6, pp.20, 2013, https://doi.org/10.1039/c5ra27553a
  19. A highly sensitive and selective “turn-on” fluorescence sensor for rapid detection of cyanide ions in aqueous solution vol.28, pp.7, 2013, https://doi.org/10.1080/10610278.2015.1125899
  20. Synthesis, Crystal Structure, Anion Sensing Applications and DFT Studies of (E)-2-[(3,5-Bis(trifluoromethyl)phenylimino)methyl]-4-chlorophenol vol.49, pp.4, 2019, https://doi.org/10.1007/s10870-018-0758-7
  21. A Schiff base colorimetric chemosensor for CN ion and its dioxidomolybdenum (VI) complexes: Evaluation of structural aspects and optoelectronic properties vol.34, pp.4, 2020, https://doi.org/10.1002/aoc.5520
  22. Highly Selective Colorimetric and Fluorescent Chemosensor for CN− Based on o-Tolidine vol.87, pp.5, 2013, https://doi.org/10.1007/s10812-020-01087-y
  23. A Schiff base colorimetric probe for real-time naked-eye detection of biologically important fluoride and cyanide ions: Single crystal, experimental, theoretical, biological and antioxidant studies vol.1221, pp.None, 2020, https://doi.org/10.1016/j.molstruc.2020.128663