DOI QR코드

DOI QR Code

Effects of Fused Thiophene Bridges in Organic Semiconductors for Solution-Processed Small-Molecule Organic Solar Cells

  • Lee, Jae Kwan (Department of Chemistry Education, Chosun University) ;
  • Lee, Sol (Department of Green Energy Engineering, Hoseo University) ;
  • Yun, Suk Jin (Department of Chemistry Education, Chosun University)
  • Received : 2013.03.31
  • Accepted : 2013.04.24
  • Published : 2013.07.20

Abstract

Three push-pull organic semiconductors, TPA-$Th_3$-MMN (1), TPA-ThTT-MMN (2), and TPA-ThDTT-MMN (3), comprising a triphenylamine donor and a methylene malononitrile acceptor linked by various ${\pi}$-conjugated thiophene units were synthesized, and the effects of the ${\pi}$-conjugated bridging unit on the photovoltaic characteristics of solution-processed small-molecule organic solar cells based on these semiconductors were investigated. Planar bridging units with extended ${\pi}$-conjugation effectively facilitated intermolecular ${\pi}-{\pi}$ packing interactions in the solid state, resulting in enhanced $J_{sc}$ values of the SMOSCs fabricated with bulk heterojunction films.

Keywords

References

  1. Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93, 394. https://doi.org/10.1016/j.solmat.2008.10.004
  2. Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009, 21, 1323. https://doi.org/10.1002/adma.200801283
  3. Arias, A. C.; Mackenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A. Chem. Rev. 2010, 110, 3. https://doi.org/10.1021/cr900150b
  4. Krebs, F. C.; Fyenbo, J.; Tanenbaum, D. M.; Gevorgyan, S. A.; Andriessen, R.; van Remoortere, B.; Galagan, Y.; Jorgensen, M. Energy Environ. Sci. 2011, 4, 4116. https://doi.org/10.1039/c1ee01891d
  5. Nielsen, T. D.; Cruickshank, C.; Foged, S.; Thorsen, J.; Kreb, F. C. Sol. Energy Mat. Sol. Cells 2010, 94, 1553. https://doi.org/10.1016/j.solmat.2010.04.074
  6. Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2006, 16, 45. https://doi.org/10.1039/b510618b
  7. Helgesen, M.; Søndergaard, R.; Krebs, F. C. J. Mater. Chem. 2010, 20, 36. https://doi.org/10.1039/b913168j
  8. Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photon. 2009, 3, 297. https://doi.org/10.1038/nphoton.2009.69
  9. Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. J. Am. Chem. Soc. 2011, 133, 4625. https://doi.org/10.1021/ja1112595
  10. Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Angew. Chem. Int. Ed. 2011, 50, 2995. https://doi.org/10.1002/anie.201005451
  11. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. https://doi.org/10.1002/adfm.200500211
  12. Yang, C.; Lee, J. K.; Heeger, A. J.; Wudl, F. J. Mater. Chem. 2009, 19, 5416. https://doi.org/10.1039/b901732a
  13. Lee, K.; Kim, J. Y.; Park, S. H.; Kim, S. H.; Cho, S.; Heeger, A. J. Adv. Mater. 2007, 19, 2445. https://doi.org/10.1002/adma.200602653
  14. Lee, J. K.; Coates, N. E.; Cho, S.; Cho, N. S.; Moses, D.; Bazan, G. C.; Lee, K.; Heeger, A. J. Appl. Phys. Lett. 2008, 92, 243308. https://doi.org/10.1063/1.2937844
  15. Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. J. Am. Chem. Soc. 2008, 130, 3619. https://doi.org/10.1021/ja710079w
  16. Kim, B.; Yeom, H. R.; Yun, M. H.; Kim, J. Y.; Yang, C. Macromoleculs 2012, 45, 8658. https://doi.org/10.1021/ma302133h
  17. Kim, B.; Yeom, H. R.; Choi, W. Y.; Kim, J. Y.; Yang, C. Tetrahedron 2012, 68, 6696. https://doi.org/10.1016/j.tet.2012.05.114
  18. Kim, G.; Yeom, H. R.; Cho, S.; Seo, J. H.; Kim, J. Y.; Yang. C. Macromoleculs 2012, 45, 1847. https://doi.org/10.1021/ma202661b
  19. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Prog. Photovolt. 2011, 19, 565. https://doi.org/10.1002/pip.1150
  20. Roncali, J. Acc. Chem. Res. 2009, 42, 1719. https://doi.org/10.1021/ar900041b
  21. Walker, B.; Kim, C.; Nguyen, T.-Q. Chem. Mater. 2011, 23, 470. https://doi.org/10.1021/cm102189g
  22. Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nature Materials 2012, 11, 44.
  23. Tamayo, A. B.; Dang, X. D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T.-Q. Appl. Phys. Lett. 2009, 94, 103301. https://doi.org/10.1063/1.3086897
  24. Ma, C. Q.; Fonrodona, M.; Schikora, M. C.; Wienk, M. M.; Janssen, R. A. J.; Bauele, P. Adv. Funct. Mater. 2008, 18, 3323. https://doi.org/10.1002/adfm.200800584
  25. Ooi, Z. E.; Tam, T. L.; Shin, R. Y. C.; Chen, Z. K.; Kietzke, T.; Sellinger, A.; Baumgarten, M.; Mullen, K.; deMello, J. C. J. Mater. Chem. 2008, 18, 4619. https://doi.org/10.1039/b813786m
  26. Jeong, B. S.; Choi, H.; Cho, N.; Ko, H. M.; Lim, W.; Song, K.; Lee, J. K.; Ko, J. Sol. Energy Mat. Sol. Cells 2011, 95, 1731. https://doi.org/10.1016/j.solmat.2011.01.041
  27. So, S.; Choi, H.; Kim, C.; Cho, N.; Ko, H. M.; Lee, J. K.; Ko, J. Sol. Energy Mat. Sol. Cells 2011, 95, 3433. https://doi.org/10.1016/j.solmat.2011.07.034
  28. So, S.; Choi, H.; Ko, H. M.; Kim, C.; Paek, S.; Cho, N.; Song, K.; Lee, J. K.; Ko, J. Sol. Energy Mat. Sol. Cells 2012, 98, 232.
  29. Ko, H. M.; Choi, H.; Paek, S.; Kim, K.; Song, K.; Lee, J. K.; Ko, J. J. Mater. Chem. 2011, 21, 7248. https://doi.org/10.1039/c1jm10667h
  30. Cho, N.; Kim, J.; Lee, J. K.; Ko, J. Tetrahedron 2012, 68, 4029. https://doi.org/10.1016/j.tet.2012.03.061
  31. Kim, J.; Cho, N.; Ko, H. M.; Kim, C.; Lee, J. K.; Ko, J. Sol. Energy Mat. Sol. Cells 2012, 102, 159. https://doi.org/10.1016/j.solmat.2012.03.007
  32. Choi, H.; Ko, H. M.; Cho, N.; Song, K.; Lee, J. K.; Ko, J. ChemSusChem 2012, 5, 2045. https://doi.org/10.1002/cssc.201200242
  33. Cho, N.; Song, K.; Lee, J. K.; Ko, J. Chem. Eur. J. 2012, 18, 11433. https://doi.org/10.1002/chem.201201321
  34. Paek, S.; Cho, N.; Song, K.; Jun, M. J.; Lee, J. K.; Ko, J. J. Phys. Chem. C 2012, 116, 23202.
  35. Lee, J. K.; Jeong, B. S.; Kim, J.; Kim, C.; Ko, J. J. Photochem. Photobiol. A Chem. 2012, 251, 25.
  36. Paek, S.; Cho, N.; Cho, S.; Lee, J. K.; Ko, J. Org. Lett. 2012, 14, 6362. https://doi.org/10.1021/ol303168y
  37. Karpe, S.; Cravino, A.; Frère, P.; Allain, M.; Mabon, G.; Roncali, J. Adv. Funct. Mater. 2007, 17, 1163. https://doi.org/10.1002/adfm.200600680
  38. Roquet, S.; Cravino, A.; Leriche, P.; Alévêque, O.; Frére, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459. https://doi.org/10.1021/ja058178e
  39. Cravino, A.; Leriche, P.; Aleveque, O.; Roquet, S.; Roncali, J. Adv. Mater. 2006, 18, 3033. https://doi.org/10.1002/adma.200601230
  40. Wu, G.; Zhao, G.; He, C.; Zhang, J.; He, Q.; Chen, X.; Li, Y. Sol. Energy Mat. Sol. Cells 2009, 93, 108. https://doi.org/10.1016/j.solmat.2008.09.001
  41. Leriche, P.; Frere, P.; Cravino, A.; Aleveque, O.; Roncali, J. J. Org. Chem. 2007, 72, 8332. https://doi.org/10.1021/jo701390y
  42. Pommerehene, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bässler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551. https://doi.org/10.1002/adma.19950070608
  43. Chen, Z.; Debije, M. G.; Debaerdemaeker, T.; Osswald, P.; Wurthner, F. ChemPhysChem 2004, 5, 137. https://doi.org/10.1002/cphc.200300882
  44. Mihalietchi, V. D.; Xie, H.; de Boer, B.; Koster, L. J. A.; Blom, P. W. M. Adv. Funct. Mater. 2006, 16, 669.

Cited by

  1. Fused-Thiophene Based Materials for Organic Photovoltaics and Dye-Sensitized Solar Cells vol.6, pp.10, 2014, https://doi.org/10.3390/polym6102645
  2. Vacuum processable donor material based on dithieno[3,2-b:2prime,3prime-d]thiophene and pyrene for efficient organic solar cells vol.4, pp.47, 2013, https://doi.org/10.1039/c4ra02895c
  3. Small isomeric push-pull chromophores based on thienothiophenes with tunable optical (non)linearities vol.17, pp.14, 2013, https://doi.org/10.1039/c9ob00487d