DOI QR코드

DOI QR Code

Graphene: an emerging material for biological tissue engineering

  • Lee, Sang Kyu (Department of Chemical Engineering, Inha University) ;
  • Kim, Hyun (Department of Chemical Engineering, Inha University) ;
  • Shim, Bong Sup (Department of Chemical Engineering, Inha University)
  • 투고 : 2013.03.13
  • 심사 : 2013.04.02
  • 발행 : 2013.04.30

초록

Graphene, a carbon crystal sheet of molecular thickness, shows diverse and exceptional properties ranging from electrical and thermal conductivities, to optical and mechanical qualities. Thus, its potential applications include not only physicochemical materials but also extends to biological uses. Here, we review recent experimental studies about graphene for such bioapplications. As a prerequisite to the search to determine the potential of graphene for bioapplications, the essential qualities of graphene that support biocompatibility, were briefly summarized. Then, direct examples of tissue regeneration and tissue engineering utilizing graphenes, were discussed, including uses for cell scaffolds, cell modulating interfaces, drug delivery, and neural interfaces.

키워드

참고문헌

  1. Stolyarova E, Rim KT, Ryu S, Maultzsch J, Kim P, Brus LE, Heinz TF, Hybertsen MS, Flynn GW. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci USA, 104, 9209 (2007). http:// dx.doi.org/10.1073/pnas.0703337104.
  2. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafersize graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater, 8, 203 (2009). http://dx.doi.org/10.1038/nmat2382.
  3. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http:// dx.doi.org/10.1038/nature07719.
  4. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451.
  5. He HY, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett, 287, 53 (1998). http://dx.doi. org/10.1016/s0009-2614(98)00144-4.
  6. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater Sci, 56, 1178 (2011). http://dx.doi.org/10.1016/j.pmatsci.2011.03.003.
  7. Guo SJ, Dong SJ. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev, 40, 2644 (2011). http://dx.doi.org/10.1039/c0cs00079e.
  8. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22, 1027 (2010). http://dx.doi.org/10.1002/elan.200900571.
  9. Wassei JK, Kaner RB. Graphene, a promising transparent conductor. Mater Today, 13, 52 (2010). http://dx.doi.org/10.1016/S1369-7021(10)70034-1.
  10. Wan XJ, Long GK, Huang L, Chen YS. Graphene: a promising material for organic photovoltaic cells. Adv Mater, 23, 5342 (2011). http://dx.doi.org/10.1002/adma.201102735.
  11. Pang SP, Hernandez Y, Feng XL, Mullen K. Graphene as transparent electrode material for organic electronics. Adv Mater, 23, 2779 (2011). http://dx.doi.org/10.1002/adma.201100304.
  12. Moon JS, Antcliffe M, Seo HC, Lin SC, Schmitz A, Milosavljevic I, McCalla K, Wong D, Gaskill DK, Campbell PM, Lee KM, Asbeck P. Graphene review: an emerging RF technology. Proceedings of the IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Santa Clara, CA, 199 (2012). http://dx.doi. org/10.1109/SiRF.2012.6160170.
  13. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 39, 228 (2010). http://dx.doi. org/10.1039/b917103g.
  14. Zhang XY, Yin JL, Peng C, Hu WQ, Zhu ZY, Li WX, Fan CH, Huang Q. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 49, 986 (2011). http://dx.doi.org/10.1016/j.carbon.2010.11.005.
  15. Mutlu GkM, Budinger GRS, Green AA, Urich D, Soberanes S, Chiarella SE, Alheid GF, McCrimmon DR, Szleifer I, Hersam MC. Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett, 10, 1664 (2010). http://dx.doi.org/10.1021/nl9042483.
  16. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show as-bestos-like pathogenicity in a pilot study. Nat Nanotechnol, 3, 423 (2008). http://dx.doi.org/10.1038/nnano.2008.111.
  17. Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano, 5, 516 (2010). http://dx.doi. org/10.1021/nn1024303.
  18. Park S, Mohanty N, Suk JW, Nagaraja A, An JH, Piner RD, Cai WW, Dreyer DR, Berry V, Ruoff RS. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater, 22, 1736 (2010). http://dx.doi.org/10.1002/adma.200903611.
  19. Kalbacova M, Broz A, Kong J, Kalbac M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon, 48, 4323 (2010). http://dx.doi.org/10.1016/j.carbon.2010.07.045.
  20. Guo CX, Zheng XT, Lu ZS, Lou XW, Li CM. Biointerface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection. Adv Mater, 22, 5164 (2010). http://dx.doi.org/10.1002/adma.201001699.
  21. Ryoo SR, Kim YK, Kim MH, Min DH. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano, 4, 6587 (2010). http://dx.doi.org/10.1021/nn1018279.
  22. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. Graphene-based antibacterial paper. ACS Nano, 4, 4317 (2010). http:// dx.doi.org/10.1021/nn101097v.
  23. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett, 200, 201 (2011). http://dx.doi.org/10.1016/j.toxlet.2010.11.016
  24. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater, 23, H263 (2011). http://dx.doi. org/10.1002/adma.201101503.
  25. Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, Liu L, Jin G, Tang M, Cheng G. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials, 32, 9374 (2011). http://dx.doi.org/http://dx.doi.org/ 10.1016/j.biomaterials.2011.08.065.
  26. Sayyar S, Murray E, Thompson BC, Gambhir S, Officer DL, Wallace GG. Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon, 52, 296 (2013). http://dx.doi.org/10.1016/j.carbon.2012.09.031.
  27. Fan HL, Wang LL, Zhao KK, Li N, Shi ZJ, Ge ZG, Jin ZX. Fabrication, mechanical properties, and biocompatibility of graphenereinforced chitosan composites. Biomacromolecules, 11, 2345 (2010). http://dx.doi.org/10.1021/bm100470q.
  28. Lim HN, Huang NM, Lim SS, Harrison I, Chia CH. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomed, 6, 1817 (2011). http://dx.doi.org/10.2147/ijn.s23392.
  29. Yang G, Su J, Gao J, Hu X, Geng C, Fu Q. Fabrication of well-controlled porous foams of graphene oxide modified poly(propylenecarbonate) using supercritical carbon dioxide and its potential tissue engineering applications. J Supercrit Fluids, 73, 1 (2013). http://dx.doi.org/10.1016/j.supflu.2012.11.004.
  30. Chen GY, Pang DWP, Hwang SM, Tuan HY, Hu YC. A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials, 33, 418 (2012). http://dx.doi.org/10.1016/j.biomaterials.2011.09.071.
  31. Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP. Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater, 24, 4285 (2012). http://dx.doi.org/10.1002/adma.201200846.
  32. Ku SH, Park CB. Myoblast differentiation on graphene oxide. Biomaterials, 34, 2017 (2013). http://dx.doi.org/10.1016/j.biomaterials.2012.11.052.
  33. Sebaa M, Nguyen TY, Paul RK, Mulchandani A, Liu H. Graphene and carbon nanotube-graphene hybrid nanomaterials for human embryonic stem cell culture. Mater Lett, 92, 122 (2013). http:// dx.doi.org/10.1016/j.matlet.2012.10.035.
  34. Park HB, Nam HG, Oh HG, Kim JH, Kim CM, Song KS, Jhee KH. Effect of graphene on growth of neuroblastoma cells. J Microbiol Biotechnol, 23, 274 (2013). https://doi.org/10.4014/jmb.1212.12005
  35. Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci, 10, 682 (2009). http://dx.doi.org/10.1038/nrn2685.
  36. Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science, 303, 1818 (2004). http://dx.doi.org/10.1126/science.1095833.
  37. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 130, 10876 (2008). http://dx.doi.org/10.1021/ja803688x.
  38. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem, 19, 2710 (2009). http:// dx.doi.org/10.1039/B821416F.
  39. Depan D, Shah J, Misra RDK. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng C, 31, 1305 (2011). http://dx.doi.org/10.1016/j.msec.2011.04.010.
  40. Liu K, Zhang JJ, Cheng FF, Zheng TT, Wang C, Zhu JJ. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem, 21, 12034 (2011). http://dx.doi.org/10.1039/C1JM10749.
  41. Bao H, Pan Y, Ping Y, Sahoo NG, Wu T, Li L, Li J, Gan LH. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 7, 1569 (2011). http://dx.doi.org/10.1002/smll.201100191.
  42. Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng, 10, 275 (2008). http://dx.doi.org/10.1146/annurev.bioeng.10.061807.160518.
  43. Nam Y. Material considerations for in vitro neural interface technology. MRS Bull, 37, 566 (2012). http://dx.doi.org/10.1557/mrs.2012.98.
  44. Ordonez J, Schuettler M, Boehler C, Boretius T, Stieglitz T. Thin films and microelectrode arrays for neuroprosthetics. MRS Bull, 37, 590 (2012). http://dx.doi.org/doi:10.1557/mrs.2012.117.
  45. Wallace G, Spinks G. Conducting polymers--bridging the bionic interface. Soft Matter, 3, 665 (2007). http://dx.doi.org/10.1039/b618204f.
  46. Wallace GG, Spinks GM. Conducting polymers--a bridge across the bionic interface. Chem Eng Prog, 103, S18 (2007).
  47. Green RA, Lovell NH, Wallace GG, Poole-Warren LA. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials, 29, 3393 (2008). http:// dx.doi.org/10.1016/j.biomaterials.2008.04.047.
  48. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol, 3, 434 (2008). http://dx.doi.org/10.1038/nnano.2008.174.
  49. Nguyen P, Berry V. Graphene interfaced with biological cells: opportunities and challenges. J Phys Chem Lett, 3, 1024 (2012). http://dx.doi.org/10.1021/jz300033g.
  50. Zhou K, Thouas GA, Bernard CC, Nisbet DR, Finkelstein DI, Li D, Forsythe JS. Method to impart electro-and biofunctionality to neural scaffolds using graphene-polyelectrolyte multilayers. ACS Appl Mater Interfaces, 4, 4524 (2012). http://dx.doi.org/10.1021/am3007565.
  51. Bendali A, Hess LH, Seifert M, Forster V, Stephan AF, Garrido JA, Picaud S. Purified neurons can survive on peptide-free graphene layers. Adv Healthc Mater, in press (2013). http://dx.doi. org/10.1002/adhm.201200347.
  52. Chen CH, Lin CT, Hsu WL, Chang YC, Yeh SR, Li LJ, Yao DJ. A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Nanomedicine, in press (2013). http://dx.doi. org/10.1016/j.nano.2012.12.004.
  53. Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhausser A, Garrido JA. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater, 23, 5045 (2011). http://dx.doi.org/10.1002/adma.201102990.
  54. Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett, 10, 1098 (2010). http://dx.doi.org/10.1021/nl1002608.
  55. Luo X, Weaver CL, Tan S, Cui XT. Pure graphene oxide doped conducting polymer nanocomposite for bio-interfacing. J Mater Chem B, 1, 1340 (2013). http://dx.doi.org/10.1039/C3TB00006K.

피인용 문헌

  1. Herpes Simplex Virus Type-1 Attachment Inhibition by Functionalized Graphene Oxide vol.6, pp.2, 2014, https://doi.org/10.1021/am405040z
  2. Exigency for fusion of graphene and carbon nanotube with biomaterials vol.96, pp.5, 2014, https://doi.org/10.1080/02772248.2014.978127
  3. Stimulated myogenic differentiation of C2C12 murine myoblasts by using graphene oxide vol.67, pp.11, 2015, https://doi.org/10.3938/jkps.67.1910
  4. Regeneration of Recurrent Laryngeal Nerve using Polycaprolactone (PCL) Nerve Guide Conduit Coated with Conductive Materials vol.8, pp.1, 2015, https://doi.org/10.11106/cet.2015.8.1.88
  5. Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications vol.9, pp.4, 2015, https://doi.org/10.1021/acsnano.5b01179
  6. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications vol.10, pp.3, 2016, https://doi.org/10.1007/s11706-016-0347-7
  7. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering vol.105, pp.1, 2016, https://doi.org/10.1002/jbm.a.35684
  8. In It for the Long Haul: The Cytocompatibility of Aged Graphene Oxide and Its Degradation Products vol.5, pp.23, 2016, https://doi.org/10.1002/adhm.201600745
  9. When biomolecules meet graphene: from molecular level interactions to material design and applications vol.8, pp.47, 2016, https://doi.org/10.1039/C6NR07249F
  10. Graphene oxide/poly(N-isopropyl acrylamide)/sodium alginate-based dual responsive composite beads for controlled release characteristics of chemotherapeutic agent vol.26, pp.7, 2017, https://doi.org/10.1007/s13726-017-0543-z
  11. A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration vol.5, pp.17, 2017, https://doi.org/10.1039/C6TB03067J
  12. Minocycline hydrochloride loaded on titanium by graphene oxide: an excellent antibacterial platform with the synergistic effect of contact-killing and release-killing pp.2047-4849, 2018, https://doi.org/10.1039/C7BM00931C
  13. Integrated Microfluidic Flow-Through Microbial Fuel Cells vol.7, pp.1, 2017, https://doi.org/10.1038/srep41208
  14. Poly(glycerol-sebacate)/poly(caprolactone)/graphene nanocomposites for nerve tissue engineering vol.33, pp.5, 2018, https://doi.org/10.1177/0883911518793912
  15. Regenerative Medicine Therapies for Targeting Neuroinflammation After Stroke vol.9, pp.1664-2295, 2018, https://doi.org/10.3389/fneur.2018.00734
  16. Nanostructured Composites Based on Liquid-Crystalline Elastomers vol.10, pp.7, 2018, https://doi.org/10.3390/polym10070773
  17. Design, fabrication and structural optimization of tubular carbon/Kevlar®/PMMA/graphene nanoplate composite for bone fixation prosthesis vol.13, pp.4, 2018, https://doi.org/10.1088/1748-605X/aab8d6
  18. activation of PI3K/Akt/GSK-3β/β-catenin signal circuit vol.6, pp.5, 2018, https://doi.org/10.1039/C8BM00127H
  19. Advanced mechanical and thermal characterization of 3D bioextruded poly(ε-caprolactone)-based composites pp.1355-2546, 2018, https://doi.org/10.1108/RPJ-10-2016-0165
  20. Graphene-Based Nanocomposites for Neural Tissue Engineering vol.24, pp.4, 2019, https://doi.org/10.3390/molecules24040658