DOI QR코드

DOI QR Code

Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition

  • Park, Young Soo (Department of Polymer-nano Science and Technology, Chonbuk National University) ;
  • Moon, Hyung Suk (AFFC Co.) ;
  • Huh, Mongyoung (Korea Institute of Carbon Convergence Technology) ;
  • Kim, Byung-Joo (Korea Institute of Carbon Convergence Technology) ;
  • Kuk, Yun Su (Korea Institute of Carbon Convergence Technology) ;
  • Kang, Sin Jae (Korea Institute of Carbon Convergence Technology) ;
  • Lee, Seong Hee (Department of Polymer-nano Science and Technology, Chonbuk National University) ;
  • An, Kay Hyeok (Korea Institute of Carbon Convergence Technology)
  • 투고 : 2013.01.05
  • 심사 : 2013.02.21
  • 발행 : 2013.04.30

초록

We investigated the effects of parametric synthesis conditions of catalysts such as sintering temperature, sorts of supports and compositions of catalysts on alignment and length-control of carbon nanotubes (CNTs) using catalyst powders. To obtain aligned CNTs, several parameters were changed such as amount of citric acid, calcination temperature of catalysts, and the sorts of supports using the combustion method as well as to prepare catalyst. CNTs with different lengths were synthesized as portions of molybdenum and iron using a chemical vapor deposition reactor. In this work, the mechanisms of alignment of CNTs and of the length-control of CNTs are discussed.

키워드

참고문헌

  1. Dresselhaus MS, Dresselhaus G, Jorio A. Unusual properties and structure of carbon nanotubes. Ann Rev Mater Res, 34, 247 (2004). http://dx.doi.org/10.1146/annurev.matsci.34.040203.114607.
  2. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678 (1996). http://dx.doi.org/10.1038/381678a0.
  3. Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523.
  4. Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 277, 1971 (1997). http://dx.doi.org/10.1126/science.277.5334.1971.
  5. Ziegler KJ, Gu Z, Peng H, Flor EL, Hauge RH, Smalley RE. Controlled oxidative cutting of single-walled carbon nanotubes. J Am Chem Soc, 127, 1541 (2005). http://dx.doi.org/10.1021/ja044537e.
  6. Shuba MV, Paddubskaya AG, Kuzhir PP, Maksimenko SA, Ksenevich VK, Niaura G, Seliuta D, Kasalynas I, Valusis G. Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids. Nanotechnology, 23, 495714 (2012). http://dx.doi.org/10.1088/0957-4484/23/49/495714.
  7. Marshall MW, Popa-Nita S, Shapter JG. Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process. Carbon, 44, 1137 (2006). http://dx.doi. org/10.1016/j.carbon.2005.11.010.
  8. Ciambelli P, Sannino D, Sarno M, Leone C, Lafont U. Effects of alumina phases and process parameters on the multiwalled carbon nanotubes growth. Diamond Relat Mater, 16, 1144 (2007). http:// dx.doi.org/10.1016/j.diamond.2007.01.007.
  9. Mendoza E, Rodriguez J, Li Y, Zhu YQ, Poa CHP, Henley SJ, Romano-Rodriguez A, Morante JR, Silva SRP. Effect of the nanostructure and surface chemistry on the gas adsorption properties of macroscopic multiwalled carbon nanotube ropes. Carbon, 45, 83 (2007). http://dx.doi.org/10.1016/j.carbon.2006.08.001.
  10. Wang XB, Liu YQ, Zhu DB. Two-and three-dimensional alignment and patterning of carbon nanotubes. Adv Mater, 14, 165 (2002). http://dx.doi.org/10.1002/1521-4095(20020116)14:2<165::AIDADMA165> 3.0.CO;2-3.
  11. Motiei M, Calderon-Moreno J, Gedanken A. Forming multiwalled carbon nanotubes by the thermal decomposition of $Mo(CO)_6$. Chem Phys Lett, 357, 267 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00519-5.
  12. Ning Y, Zhang X, Wang Y, Sun Y, Shen L, Yang X, Van Tendeloo G. Bulk production of multi-wall carbon nanotube bundles on sol-gel prepared catalyst. Chem Phys Lett, 366, 555 (2002). http:// dx.doi.org/10.1016/S0009-2614(02)01647-0.
  13. Li Y, Zhang X, Tao X, Xu J, Chen F, Huang W, Liu F. Growth mechanism of multi-walled carbon nanotubes with or without bundles by catalytic deposition of methane on Mo/MgO. Chem Phys Lett, 386, 105 (2004). http://dx.doi.org/10.1016/j.cplett.2003.12.128.
  14. Xu JM, Zhang XB, Li Y, Tao XY, Chen F, Li T, Bao Y, Geise HJ. Preparation of Mg1-xFexMoO4 catalyst and its application to grow MWNTs with high efficiency. Diamond Relat Mater, 13, 1807 (2004). http://dx.doi.org/10.1016/j.diamond.2004.04.011.
  15. Ma Z, Shi J, Song Y, Guo Q, Zhai G, Liu L. Carbon with high thermal conductivity, prepared from ribbon-shaped mesosphase pitchbased fibers. Carbon, 44, 1298 (2006). http://dx.doi.org/10.1016/j.carbon.2006.01.015.
  16. Moon YK, Lee J, Lee JK, Kim TK, Kim SH. Synthesis of lengthcontrolled aerosol carbon nanotubes and their dispersion stability in aqueous solution. Langmuir, 25, 1739 (2009). http://dx.doi. org/10.1021/la8031368.

피인용 문헌

  1. Novel Method of Evaluating the Purity of Multiwall Carbon Nanotubes Using Raman Spectroscopy vol.2013, pp.1687-4129, 2013, https://doi.org/10.1155/2013/615915
  2. Atmospheric chemical vapor deposition of graphene on molybdenum foil at different growth temperatures vol.18, 2016, https://doi.org/10.5714/CL.2016.18.037