DOI QR코드

DOI QR Code

Effect of Glass Fiber-Reinforced Polymer (GFRP) Shear Connector's Shape on Inplane Shear Strength of Insulated Concrete Sandwich Panels

유리섬유복합체를 사용한 전단연결재 형상에 따른 중단열 벽체의 면내전단내력

  • Received : 2013.03.15
  • Accepted : 2013.05.15
  • Published : 2013.07.30

Abstract

This paper describes an experimental program to investigate the shear behavior of insulated concrete sandwich panels (CSPs) with different types of GFRP shear connector. The study included testing of 13 insulated CSP specimens with two types of surface conditions for extruded polystyrene (XPS) insulation and various shapes of shear connectors. All specimens were loaded in direct shear by means of push-out and were consist of three concrete panels, two insulation layer and four rows of GFRP shear connectors. Load-relative slip between concrete panel and insulation response of CSP specimens has been established through push-out shear test. Test results indicate that the surface condition of insulation has a significant effect on the bond strength between concrete panel and insulation. The specimen used XPS foam with 10mm deep slot shows higher bond strength than those used XPS foam with meshed surface. Corrugated GFRP shear connectors show equivalent strength to grid GFRP shear connectors. Cross-sectional area and embedded length of shear connector have a notable effect on overall response and inplane shear strength of the CSP specimens.

최근, 중단열 벽체의 단열성능 향상을 위해 철과 콘크리트 코어 전단연결재를 열전도율이 낮은 유리섬유복합체 (GFRP)로 전단연결재를 대체하는 연구가 활발히 진행되고 있다. 본 연구는 단열재의 표면처리에 따른 부착력과, GFRP 전단연결재로 보강된 중단열 벽체의 전단내력을 알아보기 위하여 실시되었으며, 각 변수에 따른 영향을 분석함으로써 구조성능에 대한 검증을 실시하였다. 총 13개의 실험체에 대해 직접전단실험을 실시하였으며, 파괴양상 및 하중-상대슬립 관계에 대한 분석을 실시하였다. 실험결과, 기존의 압출법 보온판 (XPS) 단열재에 거친표면처리와 10 mm의 홈을 낸 경우 단열재와 콘크리트사이에 부착력을 향상시킬 수 있으며, 부착력의 기여는 전단연결재의 파단 상대슬립의 영향을 받는 것으로 나타났다. 파형 전단연결재의 폭이 커짐에 따라 강성이 증가하였으며, 보강단면적이 증가함에 따라 최대내력이 증가하였다. 효과적인 보강을 위해서는 파형 전단연결재의 높이와 피치의 비율을 1:2로 산정해야 할 것으로 판단되며, 안정적인 파괴를 위해서는 매립깊이에 대한 검증이 필요할 것으로 사료된다.

Keywords

References

  1. B. Frankl, G. Lucier, S. Rizalla, G. Blaszak, T. Harmon, "Structural behavior of insulated prestressed concrete sandwich panels reinforced with FRP grid", CICE 2008.
  2. D. C. salmon, A. Einea, M. K. Tadros, T. D. Culp, "Full-Scale Testing of Precast Concrete Sandwich Panels", ACI structure journal, Vol. 94, No. 32, 1997, pp.354-362.
  3. PCI committee on precast sandwich wall panels, "stateof- the-art of precast/prestressed sandwich wall panels second edition", PCI journal, Spring, 2011, pp.131-176.
  4. PCI committee on precast sandwich wall panels, "stateof- the-art of precast/prestressed sandwich wall panels", PCI journal, March-April, 1997, pp.92-134.
  5. PCI committee on precast sandwich wall panels, "stateof- the-art of precast/prestressed sandwich wall panels", PCI journal, May-June, 1997, pp.32-48.
  6. S. Pessiki, A. Mlynarczyk, "Experimental evaluation of the composite behavior of precast concrete behavior of precast concrete sandwich wall panes", PCI journal, March-April, 2003, pp.54-71.
  7. T. D. Bush and G. L. Stine, "Flexural Behavior of Composite Precast Concrete Sandwich Panels with Continuous Truss Connectors", PCI journal, March-April, 1994, pp.112-121.
  8. You, Y. C., Kim, J. H., Kim, H. R., Choi, K. S., "Flexural Behavior of Insulated Concrete Sandwich Wall Panels Reinforced with Glass Fiber-Reinforced Polymer Shear Grids by Using Different Types of Insulation", AIK structure journal, Vol. 27, No. 11, 2011, pp.61-70 (in Korean).

Cited by

  1. Thermal Characteristics of Hybrid Composites for Application to Surfboard vol.28, pp.4, 2014, https://doi.org/10.5574/KSOE.2014.28.4.351