DOI QR코드

DOI QR Code

Study on Tip Clearance Effect of a Counter-Rotating Ducted Fan for VTOL UAV

수직이착륙 무인항공기용 엇회전식 덕티드팬의 팁간극 영향에 대한 연구

  • Min, Junho (Department of Mechanical Engineering, Hanyang University) ;
  • Ryu, Minhyoung (Department of Mechanical Engineering, Hanyang University) ;
  • Lee, Seawook (Department of Mechanical Engineering, Hanyang University) ;
  • Cho, Jinsoo (School of Mechanical Engineering, Hanyang University)
  • Received : 2013.04.03
  • Accepted : 2013.06.11
  • Published : 2013.07.01

Abstract

The tip clearance effect on counter-rotating ducted fan of VTOL UAV in hovering condition, was investigate using computational analysis. The $k-{\omega}$ SST turbulence model is employed in this study. The numerical results of baseline model are validated by wind tunnel test in hovering and forward conditions. It is observed that if tip clearance of one rotor in the counter-rotating ducted fan increase then the thrust coefficient of another rotor increases. In Addition to this, when the tip clearance of the rear rotor increases, the thrust of the ducted fan is improved due to increasing of average total pressure at exit plane.

제자리 비행하는 수직이착륙 무인항공기용 엇회전식 덕티드팬의 전 후방동익 팁간극이 덕티드팬에 미치는 영향을 파악하기 위해 전산해석을 수행하였다. $k-{\omega}$ SST 난류 모델을 사용하여 엇회전식 덕티드팬의 전산해석을 수행하였으며, 기준형상에 대해 제자리 및 전진 비행 상태의 공력특성을 풍동시험을 통해 계측하여 전산해석 기법을 검증하였다. 엇회전식 덕티드팬에서 특정 동익의 팁간극이 증가하면 그 동익과 덕트의 추력계수는 감소하고, 다른 동익의 추력계수는 증가하는 경향을 확인하였다. 후방동익의 팁간극이 증가하면 덕티드팬 출구면의 평균 전압을 상승시켜 덕티드팬의 추력을 증가시켰다.

Keywords

References

  1. F. Marc de Piolenc, George E. Wright Jr., Ducted Fan Design, Mass Flow, Vol. 1, 2002.
  2. Akturk, A., Shavalikul, A., and Camci, C., "PIV Measurements and Computational Study of a 5-Inch Ducted Fan for V/STOL UAV Applications," 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, 2009, pp. 5-8.
  3. Akturk, A., and Camci, C., "Tip Clearance Investigation of a Ducted Fan used in VTOL UAVs, Part 1: Baseline Experiments and Computational Validation," Proceedings of the ASME Turbo Expo Turbine Technical Conference, 2011.
  4. Cho, J., Won, Y., Lee, M., "Numerical and Experimental Analyses of the Aerodynamic Characteristics of a Counter Rotating Axial Fan," Transactions of the korean Society of mechanical engineers-B, Vol. 24, No. 3, 2000, pp. 325-337.
  5. Ko, K., Jung, H., Kim, D., and Cho, J., "Study on the Aerodynamic Characteristics of Hanyang Low Speed Wind Tunnel," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 31, No. 4, 2003, pp. 92-98. https://doi.org/10.5139/JKSAS.2003.31.4.092
  6. Leishman, J. Gordon, Principles of Helicopter Aerodynamics, Cambridge University Press, 2000.
  7. Menter, F. R., "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA journal, Vol. 32, No. 8, 1994.
  8. Bardina, J., Huang, P., and Coakley, T., "Turbulence modeling validation, testing, and development," Technical Report, NASA Technical Memorandum 110446, 1997.
  9. ANSYS, Inc., ANSYS CFX-Solver Theory Guide, Release 13.0, 2010.
  10. Kwon, K. and Sung, B., "Uncertainty Analysis for Subsonic Wind Tunnel Testing," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 30, No. 4, 2002, pp. 123-130. https://doi.org/10.5139/JKSAS.2002.30.4.123