DOI QR코드

DOI QR Code

Estimation of Basic Wind Speed at Bridge Construction Site Based on Short-term Measurements

단기 풍관측에 의한 교량현장 기본풍속 추정

  • Received : 2012.04.05
  • Accepted : 2013.04.26
  • Published : 2013.07.30

Abstract

In this paper, a study on the prediction method of basic wind speed at the construction site of long-span bridge using short-term measurements was conducted. To determine the basic wind speed in the wind resistant design for the long-span bridge away from the weather station, statistical analysis of long-term data at site is required. Wind observation mast was installed at site, and short-term measurements were gathered and the correlation analysis between the site and the station was done using regression analysis and MCP(Measure-Correlate-Predict). The long-term wind data of the site was obtained from correlation formula after topographical revision of long-term data of the station. And basic wind speed could be estimated by extreme probability distribution analysis. The research results show that the wind speed by regression analysis is predicted lower than by MCP and after this study a series of correlation analyses at several sites will show clearly the difference two methods. And also a quality control of long-term wind data is very important in estimation of wind speed.

본 논문에서는 단기 관측자료를 활용하여 장대교량 현장의 기본풍속을 추정하는 방법에 대한 연구를 수행하였다. 기상관측소로부터 거리가 먼 장대교량의 내풍설계시 현장의 기본 풍속을 추정하기 위해 현장의 장기 풍속자료를 통계처리하는 것이 필요하다. 현장에 풍관측탑을 설치하고 단기간의 풍관측 자료를 확보하였고 선형회귀분석 및 MCP 방법을 이용하여 인근 기상관측소와의 상관관계를 분석하였다. 기상관측소의 장기풍자료를 지형보정을 한 후 상관관계식에 의해 현장의 장기 풍속자료를 얻었고 풍속자료의 극치 확률분포 분석에 의해 기본풍속 산정을 할 수 있었다. 연구결과에서는 선형회귀분석의 방법이 MCP 방법에 비해 풍속을 낮게 추정하고 있으며, 향후 여러 현장에서 일련의 상관관계 분석을 수행한다면 종합적으로 두 방법에 의한 기본풍속 산정의 차이를 보다 명확히 보여줄 것이다. 또한, 장기자료의 질 관리가 풍속추정에 매우 중요하다는 것을 보여주고 있다.

Keywords

References

  1. Kwon, S. D. and Lee, S. L. (2009). "Estimation of design wind velocity based on short term measurements." Journal of KSCE, Vol. 29, No. 3A, pp. 209-216 (in Korean).
  2. Kwon, S. D. and Lee, J. H. (2008). "Estimation of extreme wind speeds in southern and western coasts by typhoon simulation." Journal of KSCE, Vol. 28, No. 4A, pp. 431-438 (in Korean).
  3. Anthony L. Rogers, John W. Rogers, and James F. Manwell (2005). "Comparison of the performance of four measure-correlate- predict algorithms." Journal of Wind Engineering and Industrial Aerodynamics 93, pp. 243-264. https://doi.org/10.1016/j.jweia.2004.12.002
  4. Manwell, J. F., Rogers, A. L., McGowan, J. G. and Bailey, B. H. (2002). An offshore wind resource assessment study for new england, Renewable Energy, Vol. 27, pp. 175-187. https://doi.org/10.1016/S0960-1481(01)00183-5
  5. Park, S. H., Jeon, J. W. and Lee, S. L. (2009). "Determination of wind speed based on long term and short term wind data at Mokpo Bridge." Proceedings of Annual Conference of KSCE, KSCE, pp. 2191-2194 (in Korean).
  6. European Committee for Standardization (2001). Eurocode 1, Actions on structures-Part 1-4:General actions-Wind actions.
  7. Honshu-Shikoku Bridge Authority (2001). Wind resistant design manual for highway bridge (in Japanese).
  8. Korean Society of Civil Engineers (2006). Guideline of design for cable-supproted steel bridge (in Korean).
  9. Ministry of Construction and Transportation (2005). Highway bridge design code (in Korean).
  10. The Wind Engineering Insitute of Korea, The Korean Structural Engineer Association (2010). Wind-resistant engineering, Kimoondang Co (in Korean).

Cited by

  1. Estimation of Extreme Wind Speeds in Korean Peninsula using Typhoon Monte Carlo Simulation vol.29, pp.2, 2016, https://doi.org/10.7734/COSEIK.2016.29.2.141