DOI QR코드

DOI QR Code

Analysis of Response Change of Structure due to Tunnel Excavation Conditions in Sand Ground

모래지반에서 터널 굴착조건들을 반영한 상부 블록구조물의 거동변화 분석

  • 손무락 (대구대학교 토목공학과)
  • Received : 2013.02.28
  • Accepted : 2013.06.29
  • Published : 2013.07.30

Abstract

This study investigates the response of structures to tunnelling-induced ground movements in sand ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), ground condition (loose sand and dense sand). Four-story block-bearing structures have been used because the structueres can easily be characterized of the extent of dmages with crack size and distribution. Numerical parametric studies have been used to investigae of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and ground condition and provided as a relationship chart. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in sand ground.

본 연구는 모래지반에서 터널의 굴착조건(터널깊이 및 터널직경)과 시공조건(지반손실량), 지반조건(조밀한 모래, 느슨한 모래)을 변화시키면서 터널상부에 위치한 구조물의 거동변화를 조사 및 분석한 것이다. 분석에 사용된 구조물은 4층 블록식구조물로서 변형 등에 의한 균열발생과 균열폭의 차이로 인해 구조물의 손상정도를 쉽게 파악할 수 있는 특징이 있다. 다양한 터널 굴착조건 및 시공조건, 지반조건에 대해서 발생할 수 있는 터널상부 블록구조물의 거동상태를 파악하기 위해 수치해석적 매개변수 해석을 수행하였으며, 수치해석은 구조물의 실제크랙 발생을 묘사할 수 있도록 개별요소법(DEM)에 근거하여 수행하였다. 다양한 매개변수 해석으로부터 얻어진 구조물의 거동상태에 대한 결과는 터널 굴착조건 및 시공조건, 지반조건과 상호연관하여 함께 반영될 수 있도록 도표화 하였으며, 이를 이용하여 향후 모래지반에서 다양한 터널굴착 및 시공조건, 지반조건으로 인해 유발되는 터널 상부구조물의 손상정도를 보다 용이하게 파악할 수 있을 것으로 기대된다.

Keywords

References

  1. Atkinson, R. H., Amadei, B. P., Saeb, S. and Sture, S. (1989). "Response of masonry bed joints in direct shear." J. Structural Engr, ASCE, 115 (9), pp. 2276-2296. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2276)
  2. Cording, E. J. (1991). "Control of ground movements around tunnels in soil." Ninth Pan American Conference, Vina del Mar,Chile. Sociedad Chilena de Geotechina, Vol. 4, pp. 2195-2244.
  3. Cording, E. J. and Hansmire, W. H. (1975). Displacements aroundsoft ground tunnels, General Report, Session 4, 5th PanamericanCong. on Soil Mech. and Foun. Engr, Buenos Aires, November.
  4. O'Reilly, M. P. and New, B. M. (1982). Settlements above tunnels in the United Kingdom - their magnitude and effects, Tunnelling '82, M. J. Jones, ed., London, England, pp. 173-181.
  5. Page, A. W. (1978). "Finite element model for masonry." J. Structural Engr, ASCE, 104(8) pp. 1267-1285.
  6. Peck, R. B. (1969). "Deep excavations and tunneling in soft ground." Proc. 7th Int'l Conf. on Soil Mech. and Foun. Engr., Mexico City, State-of-the-Art, pp. 225-290.
  7. Son, M. (2003). The response of buildings to excavation-induced ground movements, Ph.D. Dissertation, University of Illinois at Urbana-Champaign.
  8. Son, M. and Cording, E. J. (2005). "Estimation of building damage due to excavation-induced ground movements." J. of Geote. and Geoen, Engr, ASCE, Vol. 131, No. 2, pp. 162-177. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(162)
  9. Son, M. and Yun, J. (2009). "Numerical analysis of tunnellinginduced ground movements." Tunnel Technology, Vol. 11, No. 3, pp. 229-243 (in Korean).
  10. Son, M. and Yun, J (2010). "Response analysis of nearby structures with the considiertaion of tunnel construction and ground conditions." Journal of the Korean Society of Civil Engineers, Vol. 30 No. 6C, pp. 255-263.
  11. UDEC 3.1, Theory and manual (2000). Itasca consulting group, Inc, MN.

Cited by

  1. Response analysis of nearby structures to tunneling-induced ground movements in sandy soils vol.48, 2015, https://doi.org/10.1016/j.tust.2015.03.008
  2. Response Analysis of Block-Bearing Structure due to Tunnel Excavation in Clay Ground vol.34, pp.1, 2014, https://doi.org/10.12652/Ksce.2014.34.1.0175