DOI QR코드

DOI QR Code

Geochemical Occurrence of Uranium and Radon-222 in Groundwater at Test Borehole Site in the Daejeon area

대전지역 시험용 시추공 지하수내 우라늄 및 라돈-222의 지화학적 산출특성

  • 정찬호 (대전대학교 지반방재공학과) ;
  • 유근석 (대전대학교 지반방재공학과) ;
  • 김문수 (국립환경과학원 토양지하수연구과) ;
  • 김태승 (국립환경과학원 토양지하수연구과) ;
  • 한진석 (국립환경과학원 토양지하수연구과) ;
  • 조병욱 (한국지질자원연구원)
  • Received : 2013.06.07
  • Accepted : 2013.06.25
  • Published : 2013.06.30

Abstract

A drilling project was undertaken to characterize the geochemical relationship and the occurrence of radioactive materials at a test site among public-use groundwaters previously known to have high occurrence of uranium and radon-222 in the Daejeon area. A borehole (121 m deep) was drilled and core rocks mainly consist of two-mica granite, and associated with pegmatite and dykes of intermediate composition. The groundwater samples collected at six different depths in the borehole by a double-packed system showed the pH values ranging from neutral to alkaline (7.10-9.3), and electrical conductivity ranging from 263 to 443 ${\mu}S/cm$. The chemical composition of the borehole groundwaters was of the $Ca-HCO_3(SO_4+Cl)$ type. The uranium and Rn-222 contents in the groundwater were 109-1,020 ppb and 9,190-32,800 pCi/L, respectively. These levels exceed the regulation guidelines of US EPA. The zone of the highest groundwater uranium content occurred at depths of 45 to 55m. The groundwater chemistry in this zone (alkaline, oxidated, and high in bicarbonate) is favorable for the dissolution of uranium into groundwater. The dominant uranium complex in groundwater is likely to be $(UO_2CO_3)^0$ or $(UO_2HCO_3)^+$. Radon-222 content in groundwater shows an increasing trend with depth. The uranium and thorium contents in the core were 0.372-47.42 ppm and 0.388-11.22 ppm, respectively. These levels are higher values than those previously been reported in Korea. Microscopic observations and electron microprobe analysis(EPMA) revealed that the minerals containing U and Th are monazite, apatite, epidote, and feldspar. U and Th in these minerals are likely to substitute for major elements in crystal lattice.

본 연구는 대전지역 기존 지하수중 우라늄 및 라돈-222와 같은 자연방사성 물질의 농도가 높은 것으로 알려진 한 지점을 선정하여 121 m 심도의 연구용 시추공을 확보하여 심도별 지하수내 우라늄 및 라돈-222의 산출특성 밝히고, 시추코어를 이용하여 우라늄의 기원에 대한 지화학적 상관성을 알아보고자 하였다. 이를 위하여 더블패커를 이용하여 시추공내 심도별로 6개 지하수 시료를 채취하여 화학성분 분석, 우라늄과 라돈-222의 함량을 분석하였다. 분석결과 지하수의 pH는 중성내지는 알카리성이며, 화학성분상 $Ca-HCO_3(SO_4+Cl)$ 유형에 속한다. 그리고 우라늄과 라돈-222의 농도는 각각 169~1,020 ppb와 $9,190{\pm}96{\sim}32,800{\pm}180$ pCi/L를 보여 심도별 뚜렷한 농도차이를 보이며, 모두 미국 EPA 권고치를 초과하였다. 지하수내 우라늄은 지하 45~50m 심도에서 가장 높은 함량을 보인다. 이 구간 지하수는 약알카리성의 산환환경이며 높은 $HCO_3$의 함량으로 우라늄 용존에 유리한 환경으로 보인다. 지하수내 우라늄의 형태는 우라닐탄산염화합물{$(UO_2CO_3)^0$ 혹은 $(UO_2HCO_3)^+$}이 우세한 것으로 보인다. 라돈-222 함량은 심도가 깊어질수록 증가하는 경향을 보인다. 시추코어에 의한 지질주상도특성을 보면 모암은 복운모화강암이며 페그마타이트가 수 곳에서 확인되었고, 중성질 암맥이 100 m 내외에서 확인되었다. 암석내 우라늄과 토륨의 함량은 0.372~47.4 ppm과 0.388~11.2 ppm의 범위를 보여 기존 국내에서 보고된 함량보다 높은 값을 보인다. 암석현미경 관찰 및 전자현미분석결과 방사성원소를 함유하는 광물로는 장석과 흑운모내 포획된 모자나이트, 인회석, 녹염석 광물로 확인되었으며, 광물내 주요성분을 치환하여 주로 존재한다.

Keywords

References

  1. Almeida, R. M. R., Lauria, D. C., Ferreira, A. C., and Sracek, O., 2004, Groundwater radon, radium and uranium concentrations in Regiao dos Lagos, Rio de Janeiro State, Brazil, Journal of Environmental Radioactivity, 73, 323-334. https://doi.org/10.1016/j.jenvrad.2003.10.006
  2. Apambire, W, B., Boyle, D. R., and Michel, F. A., 1997, Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environmental Geology 33, 13-24. https://doi.org/10.1007/s002540050221
  3. Burns, P. C. and Finch, R. (eds.), 1999, Uranium: Mineralogy, Geochemistry and the Environment, Reviews in Mineralogy, Vol. 38, Miner. Soc. America, Washington, 679p.
  4. CEPA (California Environmental Protection Agency), 2001, Public health goals for uranium in drinking water. CEPA, California, 30p.
  5. Cho, B. W., Jeong, C. H., and Han, I. S., 2009, A detail study on the occurrence of radioactive materials in groundwater(II), NIER, 273p (in Korean).
  6. Cho, B. W., Kim, K. H., Kim, Y. K., Sung, I. H., Ahn, J. S., Yun, U., Yoon, Y. Y., Lee, K. Y., Lee, B. D., Chon, C. M., Cho, S. Y., Chae, G. T., Chae, G. T., Choi. B. I., Hong, Y. K., Baek, S. G., Ryu, S. W., and Jeong, C. H., 2008, A detail study on the occurrence of radioactive materials in groundwater(1), NIER, 293p.
  7. Cho, B. W., Kim, K. H., Kim, Y. K., Sung, I. H., Ahn, J. S., Yun, U., Yoon, Y. Y., Lee, K. Y., Lee, B. D., Lee, H. J., Im, H. C., Cho, S. Y., and Hong, K. Y., 2006, A study on the occurrence of radioactive materials in groundwater, NIER, 200p (in Korean).
  8. Choo, C. O., 2002, Characteristics of Uraniferous Minerals in Daebo Granite and Significance of Mineral Species, Journal of Mineralogical Society of Korea, 15, 11-21 (in Korean).
  9. Cothern, C. R. and Lappenbusch, W. L., 1983, Occurrence of uranium in drinking water in the U.S. Health Physics, 48, 89-100.
  10. Han, J. H. and Park, K. H., 1996, Abundances of Uranium and Radon in Groundwater of Taejeon Area, Journal of Geosciences, 29, 589-595.
  11. Jeong, C. H., Kim, C. S., Kim, T. K., and Kim, S. J., 1997, Reaction Path Modelling on Geochemical Evolution of Groundwater and Formation of Secondary Minerals in Water-Gneiss Reaction System, Journal of Mineralogical Society of Korea, 10, 33-44 (in Korean).
  12. Jeong, C. H., Kim, D. W., Kim, M. S., Lee, Y. J., Kim, T. S., Han, J. S., and Cho, B. W., 2012, Occurrence of Natural Radioactive materials in Borehole Groundwater and Rock Core in the Icheon Area, Journal of Engineering Geology, 22, 95-111 (in Korean). https://doi.org/10.9720/kseg.2012.22.1.095
  13. Jeong, C. H., Kim, M. S., Lee, Y. J., Han, J. S., Jang, H. G., and Jo, B. U., 2011, Hydrochemistry and Occurrence of Natural Radioactive Materials within Borehole Groundwater in te Cheongwon Area, Journal of Engineering Geology, 21, 163-178 (in Korean). https://doi.org/10.9720/kseg.2011.21.2.163
  14. Langmuir, D. and Herman, J. S., 1980, Mobility of thorium in natural water at low temperatures, Geochim. Cosmochim. Acta, 44, 1753-1766. https://doi.org/10.1016/0016-7037(80)90226-4
  15. Lee, B. J., Kim, D. H., Choi, H, I., Ki, W. S., and Park, K. H., 1996, Geological Map of Korea(Daejeon sheet 1:250,000), Ministry of science and Technology. 56p (in Korean).
  16. Lee, S. M., Kim, Y. S., and Na, K. C., 1980, Geological Map of Korea(Daejeon, 1:50,000), 26p (in Korean).
  17. Murakami, T., Ohnuki, T., Osobe, H., and Sato, T., 1997, Mobility of uranium during weathering. American Mineralogist, 82, 888-899. https://doi.org/10.2138/am-1997-9-1006
  18. Park, H. I., Lee, J. D., and Jeong, J. G. 1977, Geological Map of Korea(Yuseong sheet 1:50,000), Korea Institute of Geology and Minerals. 21p (in Korean).
  19. Piper, A. M., 1944, A graphic procedure in the geochemical interpretation of water analyses. Transactions of American Geophysical Union, 25, 914-923. https://doi.org/10.1029/TR025i006p00914
  20. Shin, D. C., Kim, Y. S., Moon, J. Y., Park, H. S., Kim, J. Y., and Park, S. K., 2002, A review on the hazard of radioactive materials in groundwater, Journal of Environmental Toxicology Society of Korea, 17, 273-384 (in Korean).
  21. Sung, I. H., Cho, B, W., Kim, D. O., Kim, K. H., Park, D. W., Park, J. K., Yoon, Y. Y., Lee, B. J., Lee, B. D., Lee, J. C., Im, H. C., Chung, K. S., Cho, S. Y., Hong, Y. K., Jang, W. S., Yang, J. H., Shin, D. C., and Han, I. S., 2002, A study on the occurrence of radioactive materials in groundwater(IV), NIER, 357p (in Korean).
  22. Sung, I. H., Cho, B. W., Woo, H. J., Kim, D. O., Kim, K. H., Park, J. K., Hong, Y. K., Lee, B. D., Yun, U., Lee, B. J., Lee, J. C., Yoon, Y. Y., Kim, Y. J., Chung, K. S., Cho, S. Y., Shin, D. C., Chang, T. W., and Yu, M. J., 2001, A study on the occurrence of radioactive materials in groundwater(III), NIER, 388p (in Korean).
  23. Sung, I. H., Kim, D. O., Woo, H. J., Cho, B. W., Park, J. K., Lee, H. Y., Chung, K. S., Yoon, Y. Y., Cho, S. Y., Lee, Y. J., Lee, B. D., Kim, T. K., Kim, K. S., Choo, C. O., and Shin, D. C., 1999, A study on the occurrence of radioactive materials in groundwater(I), NIER, 338p (in Korean).
  24. Sung, I. H., Kim, D. O., Woo, H. J., Chung, K. S., Cho, B. W., Lee, B. D., Hong, Y. K., Park, J. K., Yun, U., Lee, B. J., Kim, Y. J., Yoon, Y. Y., Cho, S. Y., Shin, D. C., and Jang, T. W., 2000, A study on the occurrence of radioactive materials in groundwater(II), NIER, 323p (in Korean).
  25. Zapecza, O. S. and Szabo, Z., 1986, Natural radioactivity in ground water-a review. USGS Water-supply Paper 2325, Ground Water Quality: Hydrologic Conditions and Event, USGS, 50-57.

Cited by

  1. Hydrogeochemical Characteristics, Occurrence, and Distribution of Natural Radioactive Materials (Uranium and Radon) in Groundwater of Gyeongnam and Gyeongbuk Provinces vol.24, pp.4, 2014, https://doi.org/10.9720/kseg.2014.4.551
  2. Spatial relationships between radon and topographical, geological, and geochemical factors and their relevance in all of South Korea vol.74, pp.6, 2015, https://doi.org/10.1007/s12665-015-4526-0
  3. Occurrences of Uranium and Radon-222 from Groundwaters in Various Geological Environment in the Hoengseong Area vol.25, pp.4, 2015, https://doi.org/10.9720/kseg.2015.4.557
  4. A microfluidic approach to water-rock interactions using thin rock sections: Pb and U sorption onto thin shale and granite sections vol.324, 2017, https://doi.org/10.1016/j.jhazmat.2016.10.071
  5. Petrological characteristics of the Yeongdeok granite vol.23, pp.2, 2014, https://doi.org/10.7854/JPSK.2014.23.2.31
  6. 다양한 지질환경에서 지하수의 수리화학 및 자연방사성물질 산출특성 vol.26, pp.4, 2013, https://doi.org/10.9720/kseg.2016.4.531
  7. 지리정보시스템(GIS)을 이용한 토양지질도 분포와 실내라돈 상관성 연구 : 화천 및 장수의 사례를 근거로 vol.27, pp.4, 2013, https://doi.org/10.15269/jksoeh.2017.27.4.333
  8. 전라남도 일대 지하수 중에서 산출하는 자연방사성물질 우라늄과 라돈의 수리지구화학적 거동특징 vol.27, pp.4, 2013, https://doi.org/10.9720/kseg.2017.4.501
  9. 지진 전조인자로서 지하수내 라돈 및 화학성분의 상관성 연구 vol.28, pp.2, 2013, https://doi.org/10.9720/kseg.2018.2.313
  10. 수리지화학적 추적자(222Rn, 주요용존이온)와 미생물 군집 분석을 통한 도심 지역 하천에서의 지하수 유출 특성 평가 vol.25, pp.2, 2013, https://doi.org/10.7857/jsge.2020.25.2.016