DOI QR코드

DOI QR Code

An Examination on the Dispersion Characteristics of Boil-off Gas in Vent Mast Exit of Membrane Type LNG Carriers

멤브레인형 LNG선박 화물탱크 벤트 마스트 출구에서의 BOG 확산 특성에 관한 연구

  • Kang, Ho-Keun (Institute of Ship & Ocean Systems Engineering, Korean Register of Shipping)
  • 강호근 (한국선급 선박해양시스템연구원)
  • Received : 2013.03.14
  • Accepted : 2013.04.25
  • Published : 2013.04.30

Abstract

Liquefied gas carriers generally transport cargoes of flammable or toxic nature. Since these cargoes may cause an explosion, fire or human casualty, the accommodation spaces, service spaces and control stations of liquefied gas carriers should be so located as to avoid ingress of gas. For this reason, the paragraph 8.2.9 of IGC Code in IMO requires that the height of vent exits should be not less than B/3 or 6 m whichever is greater, above the weather deck and 6 m above the working area and the fore and aft gangway to prevent any concentration of cargo vapor or gas at such spaces. Besides as known, the LNG market has been growing continually, which has led to LNG carriers becoming larger in size. Under this trend, the height of a vent will have to be raised considerably since the height of a vent pipe is generally decided by a breadth of a corresponding vessel. Accordingly, we have initiated an examination to find an alternative method which can be used to determine the safe height of vent masts, instead of the current rule requirement. This paper describes the dispersion characteristics of boil-off gas spouted from a vent mast under cargo tank cool-down conditions in the membrane type LNG carriers.

일반적으로 액체가스운반선은 인화성 화물이나 독성물질을 운반한다. 이러한 화물들은 폭발, 화재 및 인명손상을 가져올 수 있기 때문에, 액체가스운반선의 거주구역, 서비스 구역 및 통제실은 가스의 유입이 원천적으로 차단되도록 설계한다. 이러한 이유로, IMO IGC 코드의 멤브레인형 LNG선박의 화물탱크에 설치되는 벤트 출구의 높이는 노출갑판상 B/3 또는 6m 중 큰 것 이상으로 하고 작업구역 및 전후부 통행로, 갑판상의 저장탱크 및 화물설계 액위보다 6m 이상 높게 설치하여야 한다라고 규정하고 있다. 또한 LNG 시장이 점진적으로 증가하면서, LNG선박의 크기도 증가해 왔다. 때문에 현 규정에 의하면 LNG선박의 벤트의 높이는 선박 폭(B)에 비례하기 때문에 상당히 높아져야 할 것이며, 이는 높은 벤트 마스트(Mast)로 인하여 작업의 어려움 및 전방 시야를 방해하는 등 항해의 어려움을 초래한다. 본 연구에서는 멤브레인형 LNG선의 Sea-trial시에 측정하였던 데이터 및 CFD유동해석을 통해 LNG선박 화물탱크의 벤트 출구의 높이에 대한 적합성 평가를 수행한다.

Keywords

References

  1. Deaves, D.(1992), Dense Gas Dispersion Modeling, Journal of Loss Prevention in the Process Industries, Vol. 5, No. 4, pp. 219-227. https://doi.org/10.1016/0950-4230(92)80044-9
  2. Dong, G., Xue, L., Yang, Y. and Yang, J.(2010), Evaluation of Hazard Range for the Natural Gas Jet Released from a High-pressure Pipeline: A Computational Parametric Study, Journal of Loss prevention in the Process Industries, Vol. 23, pp. 522-530. https://doi.org/10.1016/j.jlp.2010.04.007
  3. Havens, J.(1992), Review of Dense Gas Dispersion Field Experiments, Journal of Loss Prevention in the Process Industries, Vol. 5, No. 1, pp. 28-41. https://doi.org/10.1016/0950-4230(92)80062-D
  4. Launder, B. E. and Sharma, B. I.(1974), Application of the Energy-dissipation Model of Turbulence to the Calculation of Flow near a Spinning Disc, Letters in Heat and Mass Transfer, Vol. 1, Issue 2, pp. 131-137. https://doi.org/10.1016/0094-4548(74)90150-7
  5. Menter, F. R.(1994), Two-equation Eddy-viscosity Turbulence Models for Engineering Applications, AIAA Journal, Vol. 32, No. 8, pp. 1598-1605. https://doi.org/10.2514/3.12149

Cited by

  1. Quantitative risk analysis for gas leak and dispersion in cargo compressor room of 174K ME-GI LNG vessels vol.42, pp.5, 2018, https://doi.org/10.5916/jkosme.2018.42.5.385
  2. Numerical investigation of plume dispersion characteristics for various ambient flow velocities vol.33, pp.9, 2013, https://doi.org/10.1007/s12206-019-0846-4
  3. Numerical Study of the Action of Convection on the Volume and Length of the Flammable Zone Formed by Hydrogen Emissions from the Vent Masts Installed on an International Ship vol.9, pp.12, 2021, https://doi.org/10.3390/jmse9121348