DOI QR코드

DOI QR Code

Dietary Effects of Fermented Soybean Curd Residue (Biji) on Body Weight, Serum Lipid Profiles, and Antioxidation-Related Enzymes Activity of Mice Fed a High Fat Diet

고지방식이 마우스의 체중과 혈청지질 및 항산화계 효소활성에 미치는 발효 비지의 식이효과

  • Lee, Sang-Il (Dept. of Food, Nutrition and Culinary Arts, Keimyung College University) ;
  • Lee, Ye-Kyung (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Kim, Soon-Dong (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Lee, In-Ae (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Choi, Jongkeun (Dept. of Cosmetic Science, Chungwoon University) ;
  • Suh, Joo-Won (Division of Bioscience and Bioinformatics, Myongji University)
  • 이상일 (계명문화대학교 식품영양조리학부) ;
  • 이예경 (명지대학교 생명과학정보학부) ;
  • 김순동 (명지대학교 생명과학정보학부) ;
  • 이인애 (명지대학교 생명과학정보학부) ;
  • 최종근 (청운대학교 화장품과학과) ;
  • 서주원 (명지대학교 생명과학정보학부)
  • Received : 2013.03.15
  • Accepted : 2013.06.20
  • Published : 2013.07.31

Abstract

We investigated the ability of soybean curd residue (SCR) and its fermented products to inhibit obesity and improve the blood lipid profiles of obese mice fed a high-fat diet. Samples were prepared by fermenting SCR with Aspergillus oryzae var effuses KACC 44990 (ASCR), a microbe used for the fermentation of traditional Korean Meju, and with Monascus pilosus IFO 4480 (MSCR), a microbe used for the production of red rice. In addition, AMSCR, a mixture composed of equal amounts of ASCR and MSCR, was also prepared. Male mice were divided into six groups and fed with either a normal diet, a high-fat diet, or a high-fat diet supplemented with SCR, ASCR, MSCR, or AMSCR. After 8 weeks, body weight gain, serum and hepatic lipid profiles, and the activities of enzymes that generate or scavenge reactive oxygen species (ROS) were evaluated. Compared with the high-fat diet group, all the test groups showed a significant reduction in body, organ, and epididymal fat weight gain. These effects were observed with supplements in the order AMSCR>ASCR>MSCR>SCR. Similarly, supplements of test samples reduced high levels of serum and hepatic triglycerides (TG), total cholesterol, and low-density lipoprotein (LDL) cholesterol caused by hight-fat diet, while high-density lipoprotein (HDL) cholesterol was increased. Interestingly, the ability of ASCR to lower serum TG was stronger than that of MSCR, while MSCR showed a stronger hypocholesterolemic effect than ASCR. Meanwhile, AMSCR returned comprehensively serum lipid levels to normal. In addition, hepatic damage was prevented with effects in the order AMSCR>ASCR>MSCR>SCR. Hepatic ROS generating system including xanthine oxidase (XO) and ROS scavenging system including superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S-transferase (GST) were recovered to normal level by all test diets. In conclusion, this study suggests that SCR and its fermented products can inhibit obesity and improve lipid profiles.

본 연구에서는 대두가공부산물의 하나인 비지(SCR: soybean crud residue)를 이용하여 만든 메주를 항비만 또는 혈중지질 개선용의 식 의약 소재로써의 직접적인 이용 가능성을 검토할 목적으로 우리나라의 전통메주 발효의 주요 미생물의 하나인 Aspergillus oryzae var effuses KACC 44990로 발효시킨 메주(ASCR)와 홍국 제조용으로 사용되는 미생물의 하나인 Monascus pilosus IFO 4480으로 발효시킨 메주(MSCR) 및 이들을 1:1(w/w)로 상호 혼합한 메주(AMSCR)를 제조하였으며 이들 메주를 각 2%씩 함유하는 고지방식이로 8주간 마우스를 사육하였을 때의 체중, 혈액 및 간 조직 지질의 함량 변동과 간 조직 ROS 생성계 및 소거계 효소의 활성을 측정하였다. SCR, ASCR, MSCR 및 AMSCR은 고지방식이 또는 비만으로 유도된 간, 심장, 신장, 고환의 비대 현상과 부고환 주변 지방의 함량을 감소시키는 효과가 있으며, 그 효과는 AMSCR>ASCR>MSCR>SCR 순으로 ASCR과 AMSCR에서 높았다. SCR, ASCR, MSCR 및 AMSCR은 고지방식이 또는 비만으로 유도된 혈청과 간조직의 중성지방과 총콜레스테롤 함량을 감소시키는 효과가 있으며, 혈청의 HDL 콜레스테롤 함량을 높이면서 LDL 콜레스테롤 함량을 낮추는 효과가 있다. 특히 ASCR은 중성지방의 함량을, 그리고 MSCR은 콜레스테롤의 함량을 각각 감소시키는 효과가 높으며, ASCR과 MSCR을 혼합한 AMSCR에서 종합적인 지질개선 효과가 높았다. SCR, ASCR, MSCR 및 AMSCR은 고지방식이 또는 비만상태에서 나타나는 간 손상을 예방하는 효과가 있으며 그 효과는 AMSCR>ASCR>MSCR>SCR 순으로 컸다. SCR, ASCR, MSCR 및 AMSCR은 고지방식이 또는 비만상태에서 나타나는 ROS 생성계 효소인 XO의 활성을 억제시킴과 동시에 ROS 소거계 효소인 SOD, GPX 및 GST의 활성을 높이는 효과가 있으며 그 효과는 AMSCR>ASCR>MSCR>SCR 순으로 컸다. 결론적으로 본 실험을 통하여 발효비지는 항비만 효과가 있을 뿐만 아니라 지질을 개선할 수 있음을 확인하였다.

Keywords

References

  1. Kopelman PG. 2000. Obesity as a medical problem. Nature 404: 635-643. https://doi.org/10.1038/35007508
  2. Grundy SM. 1998. Multi-factorial causation of obesity. Implications for prevention. Am J Clin Nutr 67: 563S-572S. https://doi.org/10.1093/ajcn/67.3.563S
  3. Yun JW. 2010. Possible anti-obesity therapeutics from nature-A review. Phytochem 71: 1625-1641. https://doi.org/10.1016/j.phytochem.2010.07.011
  4. Shi M, Yang Y, Guan D, Zhang Y, Zhang Z. 2012. Bioactivity of the crude polysaccharides from fermented soybean curd residue by Flammulina velutipes. Carbohydrate Polymers 89: 1268-1276. https://doi.org/10.1016/j.carbpol.2012.04.047
  5. Shi M, Yang Y, Wang Q, Zhang Y, Wang Y, Zhang Z. 2012. Production of total polyphenol from fermented soybean curd residue by Lentinus edodes. Int J Food Sci Technol 47:1215-1221. https://doi.org/10.1111/j.1365-2621.2012.02961.x
  6. Choi MS, Kim JI, Jeong JB, Lee SB, Jeong JN, Jeong HJ, Seo EW, Kim TY, Kwon OJ, Lim JH. 2011. Suppressive effects of by-product extracts from soybean on adipocyte differentiation and expression of obesity-related genes in 3T3-L1 adipocytes. J Life Sci 21: 358-367. https://doi.org/10.5352/JLS.2011.21.3.358
  7. Matsumoto K, Watanabe Y, Yokoyama SI. 2007. Okara, soybean residue, prevents obesity in a diet-induced murine obesity model. Biosci Biotechnol Biochem 71: 720-727. https://doi.org/10.1271/bbb.60563
  8. Machida M. 2002. Progress of Aspergillus oryzae genomics. Adv Appl Microbial 51: 81-106. https://doi.org/10.1016/S0065-2164(02)51002-9
  9. Park MZ, Kim ID, Kim SD. 2001. Effect of rice addition on enzyme activities of soybean Meju fermented by Monascus spp. Korean J Postharvest Sci Technol 8: 405-411.
  10. Kim YS, Park CW, Kim SJ, Park SJ, Ryu CH, Cho HJ, Kim JO, Lim DK, Ha YL. 2002. Preparation of mushroom mycelia-cultured traditional Meju with enhanced anticaricinogenicity and sensory quality. J Korean Soc Food Sci Nutr 31: 986-993. https://doi.org/10.3746/jkfn.2002.31.6.986
  11. Choi UK, Kim MH, Lee NH, Jeong YS, Hwang YH. 2007. Changes in quality characteristics of Meju made with germinated soybean during fermentation. Korean J Food Sci Technol 39: 304-308.
  12. Lee KW, Lee SK, Lee BD. 2006. Aspergillus oryzae as probiotic in poultry-A review. Int J Poultry Sci 5: 1-3. https://doi.org/10.3923/ijps.2006.1.3
  13. Ma JY, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M. 2000. Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem 48:5220-5225. https://doi.org/10.1021/jf000338c
  14. Endo A. 1980. Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiot (Tokyo) 33: 334-336. https://doi.org/10.7164/antibiotics.33.334
  15. Choi MJ, Yu TS. 2004. Effects of red-yeast-rice supplementation on bone mineral density and bone mineral content in overiectomized rats. Korean J Nutr 37: 423-430.
  16. Martinkova L, Patakova-Juzlova P, Krent V, Kucerova Z, Havlicek V, Olsovsky P, Hovorka O, Rihova B, Vesely D, Vesela D, Ulrichova J, Prikrylova V. 1999. Biological activities of oligoketide pigments of Monascus purpreus. Food Addit Contam 16: 15-24. https://doi.org/10.1080/026520399284280
  17. Kang MR, Kim JY, Hyun YJ, Kim HJ, Yeo HY, Song YD, Lee JH. 2008. The effect of red-yeast-rice supplement on serum lipid profile and glucose control in subjects with impaired fasting glucose or impaired glucose tolerance. Korean J Nutr 41: 31-40.
  18. Yu TS, Kim HH, Yoon CG. 2003. Hepatic oxygen free radical metabolizing enzyme activities and serum lipid profile in rats fed diet supplemented with Monascus pigment. J Korean Soc Food Sci Nutr 32: 244-249. https://doi.org/10.3746/jkfn.2003.32.2.244
  19. Kim DC, In MJ, Chae HJ. 2010. Preparation of mulberry leaves tea and its quality characteristics. J Appl Biol Chem 53: 56-59. https://doi.org/10.3839/jabc.2010.010
  20. Lee SI, Kim JW, Lee YK, Yang SH, Lee IA, Suh JW, Kim SD. 2011. Anti-obesity effect of Monascus pilosus mycelial extract in high fat diet induced obese rats. J Appl Biol Chem 54: 197-205. https://doi.org/10.3839/jabc.2011.033
  21. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  22. Ellman GL. 1959. Tissue sulfhydryl group. Arch Biochem Biophys 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  23. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 248-254.
  24. Reitman S, Frankel S. 1957. A colorimetric method for the determination of serum glutamic oxaloacetic pyruvic transaminase. AM J Clin Pathol 28: 56-63. https://doi.org/10.1093/ajcp/28.1.56
  25. Karmen A. 1955. A note on the spectrophotometric assay of glutamic-oxaloacetic transaminase in human blood serum. J Clin Invest 34: 131-133.
  26. Stripe F, Della Corte E. 1969. The regulation of rat liver xanthine oxidase. J Biol Chem 244: 3855-3860.
  27. Martin JP, Dailey JM, Sugarmanand E. 1987. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch Biochem Biophys 255: 329-336. https://doi.org/10.1016/0003-9861(87)90400-0
  28. Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione Stransferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130-7139.
  29. Pagila ED, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169.
  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  31. Wu YG, Xia LL, Lin H, Zhou D, Qian H, Lin ST. 2007. Prevention of early liver injury by breviscapine in streptozotocin- induced diabetic rats. Planta Med 73: 433-438. https://doi.org/10.1055/s-2007-967182
  32. Gregoire FM, Zhang Q, Smith SJ, Tong C, Ross D, Lopez H, West DB. 2002. Diet-induced obesity and hepatic gene expression alterations in C57BL/6J and ICAM-1-deficient mice. Am J Physiol Endocrinol Metab 282: E703–E713. https://doi.org/10.1152/ajpendo.00072.2001
  33. Ha SK, Chae C. 2010. Inducible nitric oxide distribution in the fatty liver of a mouse with high fat diet-induced obesity. Exp Anim 59: 595-604. https://doi.org/10.1538/expanim.59.595
  34. Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Miyamoto K, Kaneko S. 2008. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 57: 1071-1077. https://doi.org/10.1016/j.metabol.2008.03.010
  35. Schaefer EJ. 1995. Lipoproteins, nutriton, aging and atherosclerosis. Am J Clin Nutr 61: 726-740 https://doi.org/10.1093/ajcn/61.3.726S
  36. Yao T, Sato M, Kobayashi Y, Wasa T. 1985. Amperometric assays of total and free cholesterol in serum by the combined use of immobilized cholesterol esterases and cholesterol oxidant reactors and peroxidase electrode in a flow injection system. Anal Biochem 149: 387-391. https://doi.org/10.1016/0003-2697(85)90587-1
  37. Gordon T, Kannel WB, Castelli WP, Thomase R, Dawber TR. 1981. Lipoprotein, cardiovascular disease, and death. Arth Internal Medicine 141: 1128-1131. https://doi.org/10.1001/archinte.1981.00340090024008
  38. Wang RS, Nakajima T, Honma T. 2000. Different change patterns of the isozymes of cytochrome P450 and glutathione S-transferase in chemically induced liver damage in rat. Ind Health 37: 440-448.
  39. Park GY, Lee SJ, Lim JG. 1997. Effects of green tea catechin on cytochrome p450, xanthine oxidase activities in liver and liver damage in streptozotocin induced diabetic rats. J Korean Soc Food Sci Nutr 26: 901-907.
  40. Hashim MS, Lincy S, Remya V, Teena M, Anila L. 2005. Effect of polyphenolic compounds from Coriandrum sativum on $H_2O_2$-induced oxidative stress in human lymphocytes. Food Chem 92: 653-660. https://doi.org/10.1016/j.foodchem.2004.08.027
  41. Im MJ, Manson PN, Bulkley GB, Hoopes JE. 1985. Effects of superoxide dismutase and allopurinol in survival of acute island skin flaps. Ann Surg 201: 357-359. https://doi.org/10.1097/00000658-198503000-00018
  42. Adams JD, Lauerberg BH, Mitchell JR. 1983. Plasma glutathione and glutathione disulfide in rat: Regulation and response to oxidative stress. J Pharmacol Exp Ther 227: 749-754.
  43. Lee J, Jeong JY, Cho YS, Park SK, Kim KJ, Kim MJ, Lee MK. 2010. Effect of young Phragmites communis leaves powder on lipid metabolism and erythrocyte antioxidant enzyme activities in high-fat diet fed mice. J Korean Soc Food Sci Nutr 39: 677-683. https://doi.org/10.3746/jkfn.2010.39.5.677
  44. Dahlin DC, Miwa GT, Lu AY, Nelson SD. 1984. N-acetyl p-benzo quinimine. A cytochrome P450 mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81:1327-1331. https://doi.org/10.1073/pnas.81.5.1327
  45. James LP, Mayeux PR, Hinson JA. 2003. Acetaminophen induced hepatotoxicity. Drug Metab Dispos 31: 1499-1506. https://doi.org/10.1124/dmd.31.12.1499
  46. Ajith TA, Hema U, Aswathy MS. 2007. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status. Food Chem Toxicol 45: 2267-2272. https://doi.org/10.1016/j.fct.2007.06.001
  47. Lee SI, Kim JW, Lee YK, Yang SH, Lee IA, Suh JW, Kim SD. 2011. Protective effect of Monascus pilosus mycelial extract on hepatic damage in high-fat diet induced-obese rats. J Appl Biol Chem 54: 206-213. https://doi.org/10.3839/jabc.2011.034

Cited by

  1. Biovalorisation of okara (soybean residue) for food and nutrition vol.52, 2016, https://doi.org/10.1016/j.tifs.2016.04.011
  2. Quality Properties of Gelling Product prepared from Soybean Curd Residue with Addition of Gums vol.26, pp.3, 2013, https://doi.org/10.9799/ksfan.2013.26.3.428
  3. Effect of Mixture of Lactobacillus plantarum CECT 7527, 7528, and 7529 on Obesity and Lipid Metabolism in Rats Fed a High-fat Diet vol.43, pp.10, 2014, https://doi.org/10.3746/jkfn.2014.43.10.1484
  4. 고지방식이로 비만을 유도한 C57BL/6 마우스에서 SM17의 항산화 및 항비만 효과 vol.32, pp.5, 2017, https://doi.org/10.6116/kjh.2017.32.5.47
  5. Changes of Physiochemical and Enzymatic Activities of doenjang Prepared with Different Amount of Rice koji during 30 Days of Fermentation vol.10, pp.2, 2021, https://doi.org/10.3390/foods10020372
  6. Quality Characteristics of Vegan Nutritional Bars with Fermented Soybean Curd Residue Powder vol.50, pp.8, 2013, https://doi.org/10.3746/jkfn.2021.50.8.849