DOI QR코드

DOI QR Code

해바라기씨박 단백질 가수분해물로부터 철분 결합 펩타이드의 분리

Isolation of Iron-Binding Peptides from Sunflower (Helianthus annuus L.) Seed Protein Hydrolysates

  • Choi, Dong Won (Dept. of Food Science and Technology, Chungnam National University) ;
  • Kim, Nam Ho (Dept. of Food Science and Technology, Chungnam National University) ;
  • Son, Kyung Bin (Dept. of Food Science and Technology, Chungnam National University)
  • 투고 : 2013.03.05
  • 심사 : 2013.04.24
  • 발행 : 2013.07.31

초록

해바라기씨박 단백질 가수분해물로부터 철분 결합 펩타이드를 분리하기 위해 해바라기씨박 단백질을 단백 가수분해 효소인 alcalase와 flavourzyme을 이용하여 가수분해하였고, 가수분해물을 3 kDa 이하로 한외여과를 하였다. 한외여과된 가수분해물은 QAE Sephadex$^{TM}$ A-25 column과 Superdex$^{TM}$ peptide 10/300 GL column을 사용하여 철분 결합 펩타이드를 분리하였고, 분리된 분획 중 철분 결합력이 가장 높은 F22를 얻었다. 본 연구에서 얻어진 해바라기씨박 단백질 가수분해물로부터 분리된 분획들은 향후 기능성식품 소재 원료로 사용될 수 있다고 판단된다.

Proteins from sunflower seeds were hydrolyzed with Alcalase and Flavourzyme to isolate iron-binding peptides. The optimal hydrolysis conditions were determined. Hydrolysates were filtered under a 3 kDa membrane and iron-binding peptides separated from the hydrolysates using ion exchange and gel permeation chromatographic methods. A fraction with the highest iron-binding activity (Fe/peptide, 0.69), F22, was obtained. These results suggest that fractions isolated from sunflower seed protein hydrolysates can be applied toward the production of iron supplements.

키워드

참고문헌

  1. Villanueva A, Vioque J, Sanchez-Vioque R, Clemente A, Bautista J, Millan F. 1999. Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases. Grasas Y Aceites 50: 472-476. https://doi.org/10.3989/gya.1999.v50.i6.697
  2. Megias C, del Mar Yust M, Pedroche J, Lquari H, Giron-Calle J, Alaiz M, Millan F, Vioque J. 2004. Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J Agric Food Chem 52: 1928-1932. https://doi.org/10.1021/jf034707r
  3. Gonzalez-Perez S, Vereijken JM. 2007. Sunflower proteins: overview of their physicochemical, structural and functional properties. J Sci Food Agric 87: 2173-2191. https://doi.org/10.1002/jsfa.2971
  4. Molina MI, Petruccelli S, Anon MC. 2004. Effect of pH and ionic strength modifications on thermal denaturation of the 11S globulin of sunflower (Helianthus annuus). J Agric Food Chem 52: 6023-6029. https://doi.org/10.1021/jf0494175
  5. Villanueva A, Vioque J, Sanchez-Vioque R, Clemente A, Pedroche J, Bautista J, Millan F. 1999. Peptide characteristics of sunflower protein hydrolysates. J Am Oil Chem Soc 76: 1455-1460. https://doi.org/10.1007/s11746-999-0184-2
  6. Kitts DD, Weiler K. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9: 1309-1323. https://doi.org/10.2174/1381612033454883
  7. Roberts PR, Burney JD, Black KW, Zaloga GP. 1999. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Digestion 60: 332-337. https://doi.org/10.1159/000007679
  8. Korhonen H, Pihlanto A. 2006. Bioactive peptides: production and functionality. Int Dairy J 16: 945-960. https://doi.org/10.1016/j.idairyj.2005.10.012
  9. Sheih IC, Wu TK, Fang TJ. 2009. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour Technol 100: 3419-3425. https://doi.org/10.1016/j.biortech.2009.02.014
  10. Kim SY, Kim SH, Song KB. 2003. Purification of an ACE inhibitory peptide from hydrolysates of duck meat protein. Nutraceuticals & Food 8: 66-69. https://doi.org/10.3746/jfn.2003.8.1.066
  11. Mine Y, Ma F, Lauriau S. 2004. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agric Food Chem 52: 1088-1094. https://doi.org/10.1021/jf0345752
  12. Gauthier SF, Pouliot Y, Saint-Sauveur D. 2006. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int Dairy J 16: 1315-1323. https://doi.org/10.1016/j.idairyj.2006.06.014
  13. Zhong F, Liu J, Ma J, Shoemaker CF. 2007. Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Res Int 40: 661-667. https://doi.org/10.1016/j.foodres.2006.11.011
  14. Lee SH, Song KB. 2009. Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein. Process Biochem 44: 378-381. https://doi.org/10.1016/j.procbio.2008.12.001
  15. Megias C, Pedroche J, Yust MM, Giron-Calle J, Alaiz M, Millan F, Vioque J. 2007. Affinity purification of copperchelating peptides from sunflower protein hydrolysates. J Agric Food Chem 55: 6509-6514. https://doi.org/10.1021/jf0712705
  16. Gaucheron F. 2000. Iron fortification in dairy industry. Trends Food Sci Technol 11: 403-409. https://doi.org/10.1016/S0924-2244(01)00032-2
  17. Ponka P, Beaumont C, Richardson DR. 1998. Function and regulation of transferrin and ferritin. Semin Hematol 35: 35-54.
  18. Hurrell R, Egli I. 2010. Iron bioavailability and dietary reference values. Am J Clin Nutr 91: 1461S-1467S. https://doi.org/10.3945/ajcn.2010.28674F
  19. Torres-Fuentes C, Alaiz M, Vioque J. 2011. Affinity purification and characterization of chelating peptides from chickpea protein hydrolysates. Food Chem 129: 485-490. https://doi.org/10.1016/j.foodchem.2011.04.103
  20. Hagenmaier FD. 1974. Aqueous processing of full-fat sunflower seeds: Yields of oil and protein. J Am Oil Chem Soc 51: 470-471. https://doi.org/10.1007/BF02635157
  21. Lee JH, Choi DW, Song KB. 2012. Isolation of calciumbinding peptides from barley protein hydrolysates. Korean J Food Preserv 19: 438-442. https://doi.org/10.11002/kjfp.2012.19.3.438
  22. Eklund A. 1976. On the determination of available lysine in casein and rapeseed protein concentrates using 2,4,6-trinitrobenzenesulphonic acid (TNBS) as a reagent for free epsilon amino group of lysine. Anal Biochem 70: 434-439. https://doi.org/10.1016/0003-2697(76)90467-X
  23. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  24. Harris DC. 1995. Quantitative chemical analysis. 4th ed. W. H. Freeman and Company, New York, NY, USA. p 804-805.
  25. Korhonen H, Pihlanto A. 2003. Food-derived bioactive peptides- opportunities for designing future foods. Curr Pharm Des 9: 1297-1308. https://doi.org/10.2174/1381612033454892
  26. Jeon SJ, Lee JH, Song KB. 2010. Preparation for calcium and iron-binding peptides from rice bran protein hydrolysates. J Appl Biol Chem 53: 174-178. https://doi.org/10.3839/jabc.2010.031
  27. Choi DW, Kim NH, Song KB. 2012. Isolation of iron and calcium-binding peptides from cottonseed meal protein hydrolsates. J Appl Biol Chem 55: 263-266. https://doi.org/10.3839/jabc.2012.041
  28. Jung WK, Lee BJ, Kim SK. 2006. Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. Br J Nutr 95: 124-128. https://doi.org/10.1079/BJN20051615
  29. Lv Y, Liu Q, Bao X, Tang W, Yang B, Guo S. 2009. Identification and characteristics of iron-chelating peptides from soybean protein hydrolysates using IMAC-$Fe^{3+}$. J Agric Food Chem 57: 4593-4597. https://doi.org/10.1021/jf9000204
  30. Storcksdieck genannt Bonsmann S, Hurrell RF. 2007. Ironbinding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. J Food Sci 72: S019-S029. https://doi.org/10.1111/j.1750-3841.2006.00229.x
  31. Conde JM, Escobar Mdel M, Pedroche Jiménez JJ, Rodriguez FM, Rodriguez Patino JM. 2005. Effect of enzymatic treatment of extracted sunflower proteins on solubility, amino acid composition, and surface activity. J Agric Food Chem 53: 8038-8045. https://doi.org/10.1021/jf051026i

피인용 문헌

  1. Purification of an iron-chelating peptide from spirulina protein hydrolysates vol.57, pp.1, 2014, https://doi.org/10.1007/s13765-013-4211-5