DOI QR코드

DOI QR Code

Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester

대각선 방향으로 분할된 압전 진동 에너지 수확 장치의 성능 연구

  • Kim, Jae Eun (School of Mechanical and Automotive Engineering, Catholic Univ. of Daegu)
  • 김재은 (대구가톨릭대학교 기계자동차공학부)
  • Received : 2013.01.28
  • Accepted : 2013.04.16
  • Published : 2013.08.01

Abstract

This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.

본 연구에서 제안한 압전 진동 에너지 수확 장치는 기존 외팔보의 직사각형 면이 대각선을 따라 분할되어 2 개의 에너지 수확 단위로 구성되어 있다. 부 구조물은 주 구조물이 진동 에너지 원에 부착되는 방향과 반대 방향으로 주 구조물의 끝단에 부착되어 있으며, 각 에너지 수확 단위는 폐회로 상태의 고유 진동수가 일치하도록 설계되었다. 동일한 고유 진동수를 갖는 2 개의 구조물이 연결될 때 관찰되는 일반적인 현상과 달리, 제안된 구조에서는 고유 진동수 분리가 작으며, 1 차 및 2 차 모드의 순서가 바뀌어 나타난다. 이로 인해 출력 전력 역시 특정 주파수 근처에서 집중 생성된다. 상용 유한 요소 해석 소프트웨어를 사용하여 제안된 진동 에너지 수확 장치의 최대 생성 전력이 동일한 설치 영역 및 끝단 질량을 갖는 기존 외팔보 형태의 장치에 비해 실질적으로 향상됨을 보였다.

Keywords

References

  1. Erturk, A. and Inman, D. J., 2011, Piezoelectric Energy Harvesting, John Wiley & Sons, Ltd., United Kingdom.
  2. Islam, R. A. and Priya, S., 2006, "Realization of High-Energy Density Polycrystalline Piezoelectric Ceramics," Applied Physics Letters, Vol. 88, 032903. https://doi.org/10.1063/1.2166201
  3. Wang, Z. and Xu, Y., 2007, "Vibration Energy Harvesting Device based on Air-spaced Piezoelectric Cantilevers," Applied Physics Letters, Vol. 90, 263512. https://doi.org/10.1063/1.2752726
  4. Kim, J. E. and Kim, Y. Y., 2009, "Shape Design of a Cantilever-type Piezoelectric Energy Harvester," Proceedings of the KSNVE Annual Spring Conference (Sokcho, Korea), pp. 456-457.
  5. Ma, P. S., Kim, J. E. and Kim, Y. Y., 2009, "Topology Optimization of a Cantilevered Piezoelectric Energy Harvester Having a Vibrating Base," Proceedings of the KSME Fall Annual Meeting (Pyeongchang, Korea), pp. 432-434.
  6. Rupp, C. J., Evgrafov, A., Maute, K. and Dunn, M. L., 2009, "Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on a Multilayer Plates and Shells," Journal of Intelligent Material Systems and Structures, Vol. 20, pp. 1923-1939. https://doi.org/10.1177/1045389X09341200
  7. Wickenheiser, A. M. and Garcia, E., 2010, "Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits," Journal of Intelligent Material Systems and Structures, Vol. 21, pp. 1343-1361. https://doi.org/10.1177/1045389X10376678
  8. Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D. and Taroni, A., 2008, "Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems," Sensors and Actuators A, Vol. 142, pp. 329-335. https://doi.org/10.1016/j.sna.2007.07.004
  9. Kim, J. E., 2010, "Design of a Vibration-powered Piezoelectric Energy-harvesting Module by Considering Variations in Excitation Frequency," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 5, pp. 637-644. https://doi.org/10.3795/KSME-A.2010.34.5.637
  10. Challa, V. R., Prasad, M. G., Shi, Y. and Fisher, F. T., 2008, "A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tunability," Smart Materials and Structures, Vol. 17, 015035. https://doi.org/10.1088/0964-1726/17/01/015035
  11. Eichhorn, C., Goldschmidtboeing, F. and Woias, P., 2009, "Bidirectional Frequency Tuning of a Piezoelectric Energy Converter Based on a Cantilever Beam," Journal of Micromechanics and Microengineering, Vol. 19, 094006. https://doi.org/10.1088/0960-1317/19/9/094006
  12. Wickenheiser, A. M. and Garcia, E., 2010, "Broadband Vibration-Based Energy Harvesting Improvement Through Frequency Up-Conversion by Magnetic Excitation," Smart Materials and Structures, Vol. 19, 065020. https://doi.org/10.1088/0964-1726/19/6/065020
  13. Jung, S.-M. and Yun, K.-S., 2010, "Energyharvesting Device with Mechanical Frequency-up Conversion Mechanism for Increased Power Efficiency and Wideband Operation," Applied Physics Letters, Vol. 96, 111906. https://doi.org/10.1063/1.3360219
  14. Erturk, A., Hoffmann, J. and Inman, D. J., 2009, "A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting," Applied Physics Letters, Vol. 94, 254102. https://doi.org/10.1063/1.3159815
  15. Ramlan, R., Brennan, M. J., Mace, B. R. and Kovacic, I., 2009, "Potential Benefits of a Non-linear Stiffness I an Energy Harvesting Device," Nonlinear Dynamics, Vol. 59, pp. 545-558.
  16. Ma, P. S., Kim, J. E. and Kim, Y. Y., 2010, "Poweramplifying Strategy in Vibration-powered Energy Harvesters," Smart Structures/NDE (Proc. SPIE, San Diego, USA, 7-11 March), Vol. 7643, pp. 7-11.
  17. Kim, J. E., Ryu, J. C., Ma, P. S. and Kim, Y. Y., 2011, Korea Patent (Registration No. 10-1053256).
  18. Aldraihem, O. and Baz, A., 2011, "Energy Harvester with a Dynamic Magnifier," Journal of Intelligent Material Systems and Structures, Vol. 22, pp. 521-530. https://doi.org/10.1177/1045389X11402706
  19. Ou, Q., Chen, X., Gutschmidt, S., Wood, A., Leigh, N. and Arrieta, A. F., 2011, "An Experimentally Validated Double-mass Piezoelectric Cantilever Model for Broadband Vibration-based Energy Harvesting," Journal of Intelligent Material Systems and Structures, Vol. 23, pp. 117-126.
  20. Seo, M.-H., Choi, D.-H., Kim, I.-H., Jung, H.-J. and Yoon, J.-B., 2012, "Multi-resonant Energy Harvester Exploiting High-mode Resonances Frequency Downshifted by a Flexible Body Beam," Applied Physics Letters, Vol. 101, 123903. https://doi.org/10.1063/1.4754147
  21. Kim, J. E. and Kim, Y. Y., 2010, "A new Dynamic Vibration Absorbing Piezoelectric Energy Harvester: Analysis," Proceedings of the KSNVE Annual Spring Conference (Jeju, Korea), pp. 519-520.
  22. Kim, J. E. and Kim, Y. Y., 2011, Korea Patent (Registration No. 10-1061591).
  23. Kim, J. E. and Kim, Y. Y., 2011, "Nested Piezoelectric Energy Harvester with Mode Sequence Conversion," International Symposium on Green Manufacturing and Applications (Seoul, Korea).
  24. Kim, J. E., 2011, Korea Patent (Application No. 10-2011-0090732).
  25. Goldschmidtboeing, E. and Woias, P., 2008, "Characterization of Different Beam Shapes for Piezoelectric Energy Harvesting," Journal of Micromechanics and Microengineering, Vol. 18, 104013. https://doi.org/10.1088/0960-1317/18/10/104013
  26. Liao, Y. and Sodano, H. A., 2008, "Model of a Single Mode Energy Harvester and Properties for Optimal Power Generation," Smart Materials and Structures, Vol. 17, 065026. https://doi.org/10.1088/0964-1726/17/6/065026
  27. Kim, J. E. and Kim, Y. Y., 2011, "Analysis of Piezoelectric Energy Harvesters of a Moderate Aspect Ratio with a Distributed Tip Mass," Journal of Vibration and Acoustics, Vol. 133, 041010. https://doi.org/10.1115/1.4003598

Cited by

  1. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices vol.39, pp.5, 2015, https://doi.org/10.3795/KSME-A.2015.39.5.499