DOI QR코드

DOI QR Code

Characteristics of Thermal Coefficient of Fiber Bragg Grating for Temperature Measurement

온도 측정을 위한 광섬유 브래그 격자 센서의 온도 계수 특성 평가

  • Kim, Heon-Young (Dep. of Mechanical Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Kang, Donghoon (Korea Railroad Research Institute) ;
  • Lee, Jin-Hyuk (Graduate School of Energy and Environment, Seoul Nat'l Univ. of Science and Technology) ;
  • Kim, Dae-Hyun (Dep. of Mechanical and Automotive Engineering, Seoul Nat'l Univ. of Science and Technology)
  • 김헌영 (서울과학기술대학원 기계공학과) ;
  • 강동훈 (한국철도기술연구원) ;
  • 이진혁 (서울과학기술대학교 에너지환경대학원) ;
  • 김대현 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2013.04.12
  • Accepted : 2013.05.08
  • Published : 2013.08.01

Abstract

A fiber Bragg grating sensor is considered a smart sensor that shows outstanding performance in the field of structural health monitoring (SHM). It has a powerful advantage, especially that of multiplexing, which enables several parameters to be sensed at multiple points by using a single optical fiber line. Among several parameters, the thermal expansion coefficient and thermo-optic coefficient are required to measure temperature. In previous studies, these were considered constant variables. This study shows that two parameters vary with temperature and newly proposes a temperature function for these two parameters. Specifically, these two parameters were defined as a single variable, and then, it was experimentally verified that this variable is a function of temperature. Finally, it was shown that temperature from RT to $100^{\circ}C$ was precisely measured by using the temperature function that was defined through the experiment.

광섬유 브래그 격자 센서는 최근 구조건전성평가 분야에서 가장 활발히 사용되는 지능형 센서 중의 하나이다. 특히 본 센서는 다양한 물리량들을 여러 지점에서 한 가닥의 광섬유로 측정할 수 있다는 장점을 갖고 있다. 이중 온도 측정을 위해서는 열팽창계수 및 열광학 계수의 사용이 필요하다. 대부분의 기존 연구에서는 이러한 물리량들을 상수값으로 가정하고 온도를 측정하였다. 본 논문에서는 FBG 센서의 온도 측정 실험을 통해 온도 변화와 관련된 두 계수가 일반적으로 사용되는 상수가 아닌 온도에 따라 변하는 변수임을 확인하였다. 최종적으로 광섬유 브래그 격자 센서의 이론에서 온도계수를 온도에 따른 함수식으로 새롭게 제안하고, 이 함수식을 이용해 상온에서 100도까지의 범위에서 정확한 온도 측정이 가능함을 확인하였다.

Keywords

References

  1. Aquaro, D. and Pieve, M., 2007, "High Temperature Heat Exchangers for Power Plants: Performance of Advanced Metallic Recuperators," Applied Thermal Engineering, Vol. 27, No. 2/3, pp. 389-400. https://doi.org/10.1016/j.applthermaleng.2006.07.030
  2. "The Sixth Basic Plan on Electricity Demand and Supply," 2013, Ministry of Knowledge Economy.
  3. Lee, J.-H. and Kim, D.-H., 2012, "Flaw Detection in Pipe-Welded Zone by Using Wavelet Transform and SH-EMAT," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 12, pp. 1511-1519. https://doi.org/10.3795/KSME-A.2012.36.12.1511
  4. Cegla, F. B., Cawley, P., Allin, J. and Davies, J., 2011, "High-Temperature (>500°C) Wall Thickness Monitoring Using Dry-Coupled Ultrasonic Waveguide Transducers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 58, No. 1.
  5. Patidar, L., Chitransh, C. S. and Rao, K.U., 2012, "Temperature Based Condition Monitoring of Rail and Structural Mill," International Journal of Advancements in Research & Technology, Vol. 1, Issue 2.
  6. Her, S.-C. and Huang, C.-Y., 2013, "Thermal Strain Analysis of Optic Fiber Sensors," Sensors, Vol. 13, Issue 2, pp. 1846-1855. https://doi.org/10.3390/s130201846
  7. Barrera, D., Finazzi, V. and Villatoro, J., 2012, "Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications," IEEE Sensors Journal, Vol. 12, No. 1.
  8. Kim, D.-H., 2009, "A Fiber-optic Tiltmeter System Based on the Moiré-Fringe Effect," Measurement Science and Technology, Vol. 20, No. 2.
  9. Kim, D.-H., 2009, "Experimental Analysis on Vibration of Composite Plate by Using FBG Sensor System," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 5, pp. 436-441.
  10. Kim, D.-H., Lee, Y.-G. and Kim, C.-G., 2010, "Development of Multiplexing Model for Moire-Fringe-Based Fiber Optic Sensor," Journal of the Korean Society for Nondestructive Testing, Vol. 30, No. 1, pp. 36-45.
  11. Yoon, H.-J. and Kim, J.-S., 2009, "Research on the Mechanical Strength of Fiber Bragg Grating Sensor Adapting to Railway Structure," Journal of the Korean Society for Railway, Vol. 12, No. 1, pp. 104-109.
  12. Dong, X., Liu, Y., Liu, Z. and Dong, X., 2001, "Simultaneous Displacement and Temperature Measurement with Cantilever-based Fiber Bragg Grating Sensor," Optics Communications, Vol. 192, issues 3-6, pp. 213-217. https://doi.org/10.1016/S0030-4018(01)01157-9
  13. Kahandawa, G. C., Epaarachchi, J., Wang, H. and Lau K. T., 2012, "Use of FBG Sensors for SHM in Aerospace Structures," Photonic Sensors, Vol. 2, No. 3, pp. 203-214. https://doi.org/10.1007/s13320-012-0065-4
  14. Takeda S.-i., Aoki, Y. and Nagao, Y., 2012, "Damage Monitoring of CFRP Stiffened Panels under Compressive Load using FBG Sensors," Composite Structures, Vol. 94, pp. 813-819. https://doi.org/10.1016/j.compstruct.2011.02.020
  15. Xian, L. and Li, H., 2013, "Calibration of a Phase-Shift Formed in a Linearly Chirped Fiber Bragg Grating and Its Thermal Effect," Journal of Lightwave Technology, Vol. 31, No. 8.
  16. Saccomanno, A., Laudati, A., Szillasi, Z., Beni, N., Cutolo, A., Irace, A., Giordano, M., Buontempo, S., Cusano, A. and Breglio, G., 2012, "Long-Term Temperature Monitoring in CMS Using Fiber Optic Sensors," IEEE Sensors Journal, Vol. 12, No. 12.
  17. Udd, E., 1995, Fiber Optic Smart Structures, John Wiley and Sons, New York, pp. 271-285
  18. Kang, D.-H. and Chung, W.-S., 2009, "Integrated Monitoring Scheme for a Maglev Guideway using Multiplexed FBG Sensor Arrays," NDT&E International, 42(4), pp. 361-368. https://doi.org/10.1016/j.ndteint.2009.01.001
  19. Rong, Q., Qiao, X., Guo, T., Wang, R., Zhang, J., Hu, M., Feng, Z., Weng, Y. and Ma, Y., 2012, "Temperature-calibrated Fiber-optic Refractometer Based on a Compact FBG-SMS Structure," Chinese optics letters, COL / Vol. 10, No. 3, pp. 030604. https://doi.org/10.3788/COL201210.030604