DOI QR코드

DOI QR Code

Development of Programs to Analyze Mechanical Load Data of Wind Turbine Generator Systems and Case Studies on Simulation Data

풍력발전시스템의 기계적 하중 데이터 분석 프로그램 개발과 시뮬레이션 데이터 적용 사례

  • Bang, Je-Sung (Mechanical Systems Safety Research Division, Korea Institute of Machinery and Materials) ;
  • Han, Jeong-Woo (Mechanical Systems Safety Research Division, Korea Institute of Machinery and Materials) ;
  • Gil, Kyehwan (Pohang Accelerator Laboratory, Pohang Univ. of Science and Technology)
  • 방제성 (한국기계연구원 기계시스템안전연구본부) ;
  • 한정우 (한국기계연구원 기계시스템안전연구본부) ;
  • 길계환 (포항공과대학교 포항가속기연구소)
  • Received : 2013.05.11
  • Accepted : 2013.06.27
  • Published : 2013.08.01

Abstract

The procedures and relevant programs developed for analyzing mechanical load data of wind turbine generator systems, which are obtained through type certification tests, are verified. The following issues according to IEC 61400-13 are covered in the developed programs: data validation, time series analysis, summary load statistics, generation of fatigue load spectra, and estimation of equivalent loads. A capture matrix for normal power production is generated to determine whether the collected data sets are sufficient to carry out fatigue analysis. Fatigue load spectra are obtained through the rainflow counting method using 50 load ranges; finally, equivalent loads are calculated using different S-N curve slopes, m, according to the relevant materials. Case studies are performed using aero-elastic simulation data of the NREL 5 MW baseline wind turbine with a monopile foundation.

형식인증시험을 통해 획득된 풍력발전기의 기계적 하중 데이터를 분석하기 위한 관련 프로그램 개발과 절차가 수행되었다. IEC 61400-13 규격을 기반으로 하는 측정 데이터에 대한 검증, 하중유형에 따른 분류, 시계열 및 통계 데이터 분석, 파워 스펙트럼 밀도함수 및 피로하중 스펙트럼 계산, 등가하중 계산 등의 절차가 본 프로그램을 통해 수행되었다. 수집된 데이터들이 피로하중을 산정하기에 충분한가를 판단하기 위해 정상전력생산의 경우에 대한 수집행렬을 구성하였다. 50 개의 하중 범위 분할 개수를 사용하는 우수집계법을 통해 피로하중 스펙트럼이 얻어지며, 사용된 재료에 따라 다르게 S-N 선도의 기울기를 적용하여 최종적으로 등가하중을 산출하였다. 모노파일 하부구조를 가지는 NREL 5MW 풍력발전기의 공탄성 시뮬레이션 데이터에 이용하여 위의 전반적인 절차를 수행하였다.

Keywords

References

  1. IEC/TS 61400-13 ed. 1, 2001, "Wind Turbine Generator Systems - Part 13: Measurement of Mechanical Loads," IEC.
  2. IEC 61400-12-1 ed. 1, 2005, "Wind Turbines - Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines," IEC.
  3. Wagner, R., 2010, Accounting for the speed shear in wind turbine power performance measurement, PhD thesis, RisO National Laboratory for Sustainable Energy.
  4. Cho, J., Hong, H., Bang, J., Park, J. and Ryu, J., 2007, "The Study of Load Measurement on U50 Wind Turbine," Journal of The Korean Society for New and Renewable Energy, Vol. 3, No. 4, pp.114-122.
  5. International Standard ISO 2533 ed. 1, 1975, "Standard Atmosphere."
  6. Ryu, J., et al., 2007, A Study on Field Test for 750kW Gearless Type Wind Turbine, final report, Unison Co. Ltd..
  7. Bannantine, J. A., Comer, J. J. and Handrock, J. L., 1990, "Fundamentals of Metal Fatigue Analysis," Prentice Hall, Englewood Cliffs, New Jersey 07632, pp. 184-196.
  8. MATLAB R2012a Programming Fundamentals.
  9. Jonkman, J., Butterfield, S., Musial, W. and Scott, G., 2009, "Definition of a 5-MW Reference Wind Turbine for Offshore System Development," NREL/TP-500-38060.
  10. http://wind.nrel.gov/designcodes/preprocessors/turbsim/.
  11. http://wind.nrel.gov/designcodes/simulators/fast/.

Cited by

  1. Evaluation of Dynamic Thrust Under Wind Shear in Wind Turbine Below Rated Wind Speed vol.40, pp.4, 2016, https://doi.org/10.3795/KSME-A.2016.40.4.407