DOI QR코드

DOI QR Code

The Effect of Electrolyte Concentration for Colloid Adsorption toward a Fluid-Fluid Interface

유체 계면에서 콜로이드 흡착에 대한 전해질 농도의 영향

  • Park, Bum Jun (Department of Chemical Engineering, Kyung Hee University)
  • Received : 2013.03.27
  • Accepted : 2013.04.21
  • Published : 2013.08.01

Abstract

I present the behavior of colloidal adsorption to an oil-water interface in the presence of electrolyte in an aqueous subphase. The optical laser tweezers and the piezo controller are used to trap an individual polystyrene microsphere in water and forcibly transfer it to the interface in the vertical direction. Addition of an electrolyte (i.e., NaCl) in the aqueous subphase enables the particle to attach to the interface, whereas the particle escapes from the trap without the adsorption in the absence of the electrolyte. Based on the analytical calculations of the optical trapping force and the electrostatic disjoining pressure between the particle and the oil-water interface, it is found that a critical energy barrier between them should exist. This study will provide a fundamental understanding for applications of colloidal particles as solid surfactants that can stabilize the immiscible fluid-fluid interfaces, such as emulsions (i.e., Pickering emulsions) and foams.

이 논문은 콜로이드 입자가 기름-물 사이의 계면으로 흡착될 때 필수적으로 존재하는 정전기적 반발력에 대한 실험적, 이론적 연구이다. 광집게(optical laser tweezers)와 피에조(piezo controller)를 사용하여, 개별 입자를 트랩(trap)한 후, 계면으로 강제 전이시킨다. 이때 수용액이 전해질을 포함한 경우에만, 입자가 계면으로 전이되며, 포함하지 않을 경우에는 흡착이 일어나지 않는다. 이러한 현상을 근본적으로 이해하기 위해, 광학 트랩핑 힘(optical trapping force)과 입자와 계면 사이에 존재하는 정전기적 분리압력(electrostatic disjoining pressure)를 정량적으로 계산하였다. 이를 바탕으로, 입자가 계면으로 흡착될 때, 그들 사이에는 필연적으로 문턱 에너지(threshold energy)가 존재함을 밝혀냈다. 콜로이드 입자가 에멀젼(emulsions)이나 거품(foams)등 두 개 이상의 섞이지 않는 유체계면을 안정화 시키는 "콜로이드 계면 활성제(colloid surfactants)" 역할을 한다는 사실을 고려했을 때, 본 연구는 이러한 입자의 흡착 현상을 근본적으로 이해하는데 있어서 중요한 지식을 제공한다.

Keywords

References

  1. Binks, B. P., and Horozov, T. S., "Colloidal Particles at Liquid Interfaces," Cambridge University Press, New York(2006).
  2. Binks, B. P., "Particles as Surfactants-Similarities and Differences," Curr. Opin. Colloid Interface Sci., 7, 21-41(2002). https://doi.org/10.1016/S1359-0294(02)00008-0
  3. Pickering, S. U., "Emulsions", J. Chem. Soc. Trans., 91, 2001-2021(1907). https://doi.org/10.1039/ct9079102001
  4. Dinsmore, A. D., et al., "Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles," Science, 298, 1006- 1009(2002). https://doi.org/10.1126/science.1074868
  5. Binks, B. P. and Fletcher, P. D. I., "Particles Adsorbed at the Oil-Water Interface: A Theoretical Comparison between Spheres of Uniform Wettability and "Janus" Particles," Langmuir, 17, 4708-4710(2001). https://doi.org/10.1021/la0103315
  6. Park, B. J. and Lee, D., "Equilibrium Orientation of Nonspherical Janus Particles at Fluid-Fluid Interfaces," ACS Nano, 6, 782-790(2012). https://doi.org/10.1021/nn204261w
  7. Park, B. J. and Lee, D., "Configuration of Nonspherical Amphiphilic Particles at a Fluid-Fluid Interface," Soft Matter, 8, 7690-7698 (2012). https://doi.org/10.1039/c2sm25775k
  8. Brugarolas, T., Park, B. J. and Lee, D., "Generation of Amphiphilic Janus Bubbles and Their Behavior at an Air-Water Interface," Adv. Funct. Mater., 21, 3924-3931(2011). https://doi.org/10.1002/adfm.201100954
  9. Park, B. J., Brugarolas, T. and Lee, D., "Janus Particles at an Oil-Water Interface," Soft Matter, 7, 6413-6417(2011). https://doi.org/10.1039/c1sm05460k
  10. Park, B. J., et al., "Geometrically and Chemically Anisotropic Particles At An Oil-water Interface," Soft Matter, 9, 3383-3388 (2013). https://doi.org/10.1039/c3sm27635j
  11. Park, B. J., et al., "Double Hydrophilic Janus Cylinders at an Air-Water Interface," Langmuir, 29, 1841-1849(2013). https://doi.org/10.1021/la304829s
  12. Aveyard, R., et al., "Measurement of Long-Range Repulsive Forces between Charged Particles at an Oil-Water Interface," Phys. Rev. Lett., 88, 246102-4(2002). https://doi.org/10.1103/PhysRevLett.88.246102
  13. Hurd, A. J., "The Electrostatic Interaction Between Interfacial Colloidal Particles," J. Phys. A: Math. Gen., 45, L1055-L1060 (1985).
  14. Park, B. J. and Furst, E. M., "Attractive Interactions Between Colloids at the Oil-Water Interface," Soft Matter, 7, 7676-7682 (2011). https://doi.org/10.1039/c1sm00005e
  15. Park, B. J. and Furst, E. M., "Micromechanics of Colloidal Aggregates at the Oil-Water Interface," Soft Matter, 7, 7683-7688 (2011). https://doi.org/10.1039/c1sm05254c
  16. Park, B. J., et al., "Direct Measurements of the Effects of Salt and Surfactant on Interaction Forces between Colloidal Particles at Water-Oil Interfaces," Langmuir, 24, 1686-1694(2008). https://doi.org/10.1021/la7008804
  17. Park, B. J., Vermant, J. and Furst, E. M., "Heterogeneity of the Electrostatic Repulsion between Colloids at the Oil-Water Interface," Soft Matter, 6, 5327-5333(2010). https://doi.org/10.1039/c0sm00485e
  18. Pieranski, P., "Two-Dimensional Interfacial Colloidal Crystals," Phys. Rev. Lett., 45, 569(1980). https://doi.org/10.1103/PhysRevLett.45.569
  19. Marinova, K., et al., "Charging of Oil-Water Interfaces due to Spontaneous Adsorption of Hydroxyl Ions," Langmuir, 12, 2045-2051(1996). https://doi.org/10.1021/la950928i
  20. Masschaele, K., et al., "Finite Ion-Size Effects Dominate the Interaction between Charged Colloidal Particles at an Oil-Water Interface," Phys. Rev. Lett., 105, 048303(2010). https://doi.org/10.1103/PhysRevLett.105.048303
  21. Pantina, J. P. and Furst, E. M., "Directed Assembly and Rupture Mechanics of Colloidal Aggregates," Langmuir, 20, 3940-3946 (2004). https://doi.org/10.1021/la0364338
  22. Lee, M. H. and Furst, E. M., "Response of a Colloidal Gel to a Microscopic Oscillatory Strain," Phys. Rev. E, 77, 041408 (2008). https://doi.org/10.1103/PhysRevE.77.041408
  23. Schneider, C. A., Rasband, W. S. and Eliceiri, K. W., "NIH Image to Image J: 25 years of Image Analysis," Nat. Meth., 9, 671-675(2012). https://doi.org/10.1038/nmeth.2089
  24. Ashkin, A., "Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime," Biophys. J., 61, 569-582(1992). https://doi.org/10.1016/S0006-3495(92)81860-X
  25. Park, B. J. and Furst, E. M., "Optical Trapping Forces for Colloids at the Oil Water Interface," Langmuir, 24, 13383-13392 (2008). https://doi.org/10.1021/la802575k
  26. Paunov, V. N. and Binks, B. P., "Analytical Expression for the Electrostatic Disjoining Pressure Taking into Account the Excluded Volume of the Hydrated Ions between Charged Interfaces in Electrolyte," Langmuir, 15, 2015-2021(1999). https://doi.org/10.1021/la981502h

Cited by

  1. Attachment Energy of Janus Particles at Fluid-Fluid Interfaces vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.655
  2. Lateral capillary interactions between colloids beneath an oil–water interface that are driven by out-of-plane electrostatic double-layer interactions vol.11, pp.44, 2015, https://doi.org/10.1039/C5SM02001H
  3. Heterogeneous interface adsorption of colloidal particles vol.13, pp.36, 2017, https://doi.org/10.1039/C7SM00618G