DOI QR코드

DOI QR Code

Manufacturing yield challenges for wafer-to-wafer integration

Wafer-to-Wafer Integration을 위한 생산수율 챌린지에 대한 연구

  • Received : 2013.02.21
  • Accepted : 2013.03.22
  • Published : 2013.03.30

Abstract

Wafer-to-Wafer (W2W) integration technology is an emerging technology promising many benefits, such as reduced size, improved performance, reduced power, lower cost, and divergent integration. As the maturity of W2W technology progresses, new applications will become more viable. However, at present the cost for W2W integration is still very high and both manufacturing yield and reliability issues have not been resolved yet for high volume manufacturing (HVM). Especially for WTW integration resolving compound yield issue can be a key factor for HVM. To have the full benefits of WTW integration technology more than simple wafer stacking technologies are necessary. In this paper, the manufacturing yield for W2W integration is described and the challenges of WTW integration will be discussed.

3D integration 기술 특히 W2W integration 기술은 전자산업의 디바이스 scaling 문제를 해결하고 고성능화 소형화 추세에 맞춘 가장 핵심적인 기술 방향이다. 그러나 W2W integration 기술은 현재 가격과 생산수율의 장애를 가지고 있고, 이를 해결하기 위해서 웨이퍼 매칭, 리던던시, 다이 면적 축소, 배선 층 수 축소와 같은 디자인 연구들이 진행되고 있다. W2W integration 기술이 대량생산으로 연결되기 위해서는 우선적으로 웨이퍼 본딩, 실리콘연삭, TSV 배선 공정의 최적화가 이루어져야 하겠지만, 가격을 포함한 생산수율을 높이기 위해서는 반드시 디자인 연구가 선행되어야 하겠다.

Keywords

References

  1. R. Scott List, C. Webb, and S. E. Kim, "3D wafer stacking technology", Proc. AMC, 18, 29-36 (2002).
  2. P. Morrow, M. Kobrinsky, M. Harmes, C. Park, S. Ramanathan, V. Ramachandrarao, H. Park, G. Kloster, S. List, and S. E. Kim, "Wafer level 3D interconnect in Cu bonding", Proc. AMC, 20, 125-130 (2004).
  3. R. Plieninger, M. Dittes, and K. Pressel, "Modern IC packaging trends and their reliability implications", Microelectron. Reliab., 46, 1868-1873 (2006). https://doi.org/10.1016/j.microrel.2006.08.008
  4. M. Lai, S. Li, J. Shih, and K. Chen, "Wafer-level three-dimensional integrated circuits (3D IC): Schemes"s, Microelectron. Eng., 88, 3282-3286 (2011). https://doi.org/10.1016/j.mee.2011.05.036
  5. Y. Kim, S. K. Kang, S. Kim, and S. E. Kim, "Wafer warpage analysis of stacked wafers for 3D integration", Microelectron. Eng., 89, 46-49 (2012). https://doi.org/10.1016/j.mee.2011.01.079
  6. S. G. Kang, J. Lee, E. S. Kim, N. Lim, S. H. Kim, S. Kim and S. E. Kim, "Fabrication and challenges of Cu-to-Cu wafer bonding", J. Microelectron. Packag. Soc., 19(2), 29-33 (2012). https://doi.org/10.6117/kmeps.2012.19.2.029
  7. R. Patti, "Three-dimensional integrated circuits and the future of system-on-chip designs", Proc. the IEEE, 94(6), 1214-1224 (2006). https://doi.org/10.1109/JPROC.2006.873612
  8. M. K. Choi and E. Kim, "Effect of Si wafer ultra-thinning on the silicon surface for 3D integration", J. Microelectron. Packag. Soc., 15(2), 133-137 (2008).
  9. J. Q. Lu, "3-D hyperintegration and packaging technologies for micron-nano systems", Proc. the IEEE, 97(1), 18-30 (2009). https://doi.org/10.1109/JPROC.2008.2007458
  10. M. Taouil and S. Hamdioui, "Yield improvement for 3D wafer-to-wafer stacked memories", J. Electron. Test., 28(4), 523-534 (2012). https://doi.org/10.1007/s10836-012-5314-3
  11. M. Taouil, S. Hamdioui, J. Verbree, and E. J. Marinissen, "On maximizing the compound yield for 3D wafer-to-wafer stacked ICs", IEEE ITC, 1-10 (2010).
  12. L. Smith, G. Smith, S. Hosali, and S. Arkalgud, "Yield considerations in the choice of 3D technology", IEEE ISSM, 535-537 (2007).
  13. S. Reda, G. Smith, and L. Smith, "Maximizing the functional yield of wafer-to-wafer 3-D integration", IEEE Trans. VLSI System, 17(9), 1357-1362 (2009). https://doi.org/10.1109/TVLSI.2008.2003513
  14. E. Singh, "Exploiting rotational symmetries for improved stacked yields in W2W 3D-SICs", IEEE VTS, 32-37 (2011).
  15. C. Chou, Y. Huang, and J. Li, "Yield-enhancement techniques for 3D random access memories", IEEE VLSI-DAT, 104-107 (2010).
  16. M. Taouil and S. Hamdioui, "Layer redundancy based yield improvement for 3D wafer-to-wafer stacked memories", IEEE ETS, 54-50 (2011).
  17. B. Vaidyanathan, Y. Wang, and Y. Xie, "Cost-aware lifetime yield analysis of heterogeneous 3D on-chip cache", IEEE Int. MTDT, 65-70 (2009).
  18. S. K. Lu, T. W. Chang, and H. Y. Hsu, "Yield enhancement techniques for 3-dimensional random access memories", Microelectron. Reliab., 52, 1065-1070 (2012). https://doi.org/10.1016/j.microrel.2011.12.017
  19. Y. Zhao, S. Khursheed, and B. M. Al-Hashimi, "Cost-effective TSV grouping for yield improvement of 3D-ICs", IEEE ATS, 201-206 (2011).
  20. J. H. Lau, "TSV manufacturing yield and hidden costs for 3D IC integration", IEEE ECTC, 1031-1042 (2010).
  21. S. Hamdioui and M. Taouil, "Yield improvement and test cost optimization for 3D stacked ICs", IEEE ATS, 480-485 (2011).
  22. E. Kim and J. Sung, "Yield challenges in wafer stacking technology", Microelectron. Reliab., 48, 1102-1105 (2008). https://doi.org/10.1016/j.microrel.2008.03.010
  23. M. Kawano, S. Uchiyama, Y. Egawa, N. Takahashi, Y. Kurita, K. Soejima, M. Komuro, S. Matsui, K. Shibata, J. Yamada, M. Ishino, H. Ikeda, Y. Saeki, O. Kato, H. Kikuchi and T. Mitsuhashi, "A 3D packaging technology for 4 Gbit stacked DRAM with 3 Gbps data transfer", IEEE IEDM, 1-4 (2006).
  24. X. Wu, G. Sun, Guangyu, X. Dong, R. Das, Y. Xie, Yuan, C. Das, and J. Li, "Cost-driven 3D integration with interconnect layers", 47th IEEE DAC, 150-155 (2010).
  25. X. Dong and Y. Xie, "System-level cost analysis and design exploration for three-dimensional integrated circuits (3D ICs)", IEEE ASP-DAC, 234-241 (2009).