DOI QR코드

DOI QR Code

Packaging Substrate Bending Prediction due to Residual Stress

잔류응력으로 인한 패키지 기판 굽힘 변형량 예측

  • Received : 2013.03.08
  • Accepted : 2013.03.25
  • Published : 2013.03.30

Abstract

This study presents new analysis method to predict bending behavior of packaging substrate structure by comparing finite element method simulation and measured curvature using 3D scanner. Packaging substrate is easily bent and deflected while undergoing various processes such as curing of prepreg and copper pattern plating. We prepare specimens with various conditions and measure contours of each specimen and compute the residual stresses on deposited films using analytical solution to find the principle of bending. Core and prepreg in packaging substrate are made up of resin and bundles of fiber which exist orthogonally each other. Anisotropic material properties cause peculiar bending behavior of packaging substrate. We simulate the bending deflection with finite element method and verify the simulated deflection with measured data. The plating stress of electrodeposited copper is about 58 MPa. The curing stresses of solder resist and prepreg are about 13 MPa and 6.4 MPa respectively in room temperature.

본 연구는 유한 요소 시뮬레이션을 이용하여 계산한 시편의 곡률과 3D 스캐너로 측정한 곡률을 비교하여 패키지 기판 구조의 휨 거동을 예측하는 새로운 분석 방법을 제안한다. 패키지 기판은 프리프레그 경화나 구리 패턴 도금과 같은 다양한 공정을 거치면서 쉽게 휘게 된다. 기판의 휨이 어떤 공정에서 어느 정도 생기는지를 알아보기 위하여 다양한 종류의 시편을 제작하고 각 시편의 형상을 3D스캐너를 이용하여 측정하였다. 그 후 시편의 형상으로부터 film에 걸리는 잔류 응력을 휨을 이용한 수식으로부터 계산하였다. 패키지 기판에 들어가는 절연체는 수지와 서로 직교 존재하는 섬유의 다발로 구성되어 있는 복합재료로서 이방성을 띄게 되는데 이는 패키지 기판의 독특한 굽힘 거동을 일으킨다. 우리는 유한 요소 법에 의한 휨 변형을 시뮬레이션하고 측정 데이터를 이용하여 시뮬레이션 휨을 비교하였다. 측정된 휨으로부터 계산한 전해 구리 도금 응력은 약 58 MPa이다. 솔더 레지스트와 프리프레그의 경화 응력은 각각 실온에서 13 MPa 및 6.4 MPa 정도이다.

Keywords

References

  1. G. G. Stoney, "The Tension of Metallic Films Deposited by Electrolysis", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 172 (1909).
  2. S. Senderoff, and A. Brenner, "The Electrolytic Preparation of Molybdenum from Fused Salts I. Electrolytic Studies", Journal of The Electrochemical Society 101, 16 (1954). https://doi.org/10.1149/1.2781198
  3. D. Fahnline, C. B. Masters and N. Salamon, "Thin Film Stress from Nonspherical Substrate Bending Measurements", Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films 9, 2483 (1991). https://doi.org/10.1116/1.577260
  4. I. S. Youn, "Warpage Improvement of PCB with Material Properties Variation of Core(in Kor)", J. Microelectron. Packag. Soc., 13(2), 1 (2006).
  5. C. G. Song and S. H. Choa, "Numerical Study of Warpage and Stress for the Ultra Thin Package(in Kor)", J. Microelectron. Packag. Soc., 17(4), 49 (2010).
  6. H. Gleskova, I. C. Cheng, S. Wagner, J. C. Sturm, and Z. Suo, "Mechanics of Thin-Film Transistors and Solar Cells on Flexible Substrates', Solar Energy 80, 687 (2006). https://doi.org/10.1016/j.solener.2005.10.010
  7. H. Lee, A. J. Rosakis and L. Freund, "Full-field Optical Measurement of Curvatures in Ultra-thin-film-substrate Systems in the Range of Geometrically Nonlinear Deformations", Journal of Applied Physics 89, 6116 (2001). https://doi.org/10.1063/1.1364650
  8. N. Salamon, and C. B. Masters, "Bifurcation in Isotropic Thin film/substrate Plates", International journal of solids and structures 32, 473 (1995). https://doi.org/10.1016/0020-7683(94)00129-K
  9. B. D. Harper and W. Chih-Ping, "A Geometrically Nonlinear Model for Predicting the Intrinsic Film Stress by the Bendingplate Method", International journal of solids and structures 26, 511 (1990). https://doi.org/10.1016/0020-7683(90)90025-Q
  10. C. B. Masters and N. Salamon, "Geometrically Nonlinear Stress-deflection Relations for Thin Film/substrate Systems", International journal of engineering science 31, 915 (1993). https://doi.org/10.1016/0020-7225(93)90103-2
  11. N. Guyot, Y. Harmand and A. Mezin, "The Role of the Sample Shape and Size on the Internal Stress Induced Curvature of Thin-film Substrate Systems", International journal of solids and structures 41, 5143 (2004). https://doi.org/10.1016/j.ijsolstr.2004.03.015
  12. H. Gleskova, I.-C. Cheng, S. Wagner, and Z. Suo, "Mechanical Theory of the Film-on-substrate-foil Structure: Curvature and Overlay Alignment in Amorphous Silicon Thin-film Devices Fabricated on Free-standing Foil Substrates", in Flexible Electronics: Materials and Applications. W. S. Wong and A. Salleo, Eds., pp.29-51, Springer, New York (2009).
  13. C. Dudescu, J. Naumann, M. Stockmann, and S. Nebel, "Characterisation of Thermal Expansion Coefficient of Anisotropic Materials by Electronic Speckle Pattern Interferometry", Strain 42, 197 (2006). https://doi.org/10.1111/j.1475-1305.2006.00271.x

Cited by

  1. Warpage of Flexible OLED under High Temperature Reliability Test vol.23, pp.1, 2016, https://doi.org/10.6117/kmeps.2016.23.1.017
  2. Reliability Characteristics of a Package-on-Package with Temperature/Humidity Test, Temperature Cycling Test, and High Temperature Storage Test vol.23, pp.3, 2016, https://doi.org/10.6117/kmeps.2016.23.3.043
  3. Measurement of Flexural Modulus of Lamination Layers on Flexible Substrates vol.23, pp.3, 2016, https://doi.org/10.6117/kmeps.2016.23.3.063
  4. Warpage Characteristics Analysis for Top Packages of Thin Package-on-Packages with Progress of Their Process Steps vol.21, pp.2, 2014, https://doi.org/10.6117/kmeps.2014.21.2.065
  5. Warpage Analysis for Top and Bottom Packages of Package-on-Package Processed with Thin Substrates vol.22, pp.2, 2015, https://doi.org/10.6117/kmeps.2015.22.2.061
  6. 나노 잔류응력 측정을 위한 비등방 압입자의 깊이별 응력환산계수 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.095
  7. 휨을 고려한 칩 패키지의 EMC/PCB 계면 접합 에너지 측정 vol.26, pp.4, 2013, https://doi.org/10.6117/kmeps.2019.26.4.101