DOI QR코드

DOI QR Code

Application of quasi-Monte Carlo methods in multi-asset option pricing

준난수 몬테칼로 방법을 이용한 다중자산 옵션 가격의 추정

  • Mo, Eun Bi (Department of Statistics, Sungkyunkwan University) ;
  • Park, Chongsun (Department of Statistics, Sungkyunkwan University)
  • Received : 2013.05.03
  • Accepted : 2013.05.29
  • Published : 2013.07.31

Abstract

Quasi-Monte Carlo method is known to have lower convergence rate than the standard Monte Carlo method. Quasi-Monte Carlo methods are using low discrepancy sequences as quasi-random numbers. They include Halton sequence, Faure sequence, and Sobol sequence. In this article, we compared standard Monte Carlo method, quasi-Monte Carlo methods and three scrambling methods of Owen, Faure-Tezuka, Owen-Faure-Tezuka in valuation of multi-asset European call option through simulations. Moro inversion method is used in generating random numbers from normal distribution. It has been shown that three scrambling methods are superior in estimating option prices regardless of the number of assets, volatility, and correlations between assets. However, there are no big differences between them.

본 연구에서는 다중자산 옵션 가격의 추정에 있어 자산의 수, 상관계수, 자산의 값들과 표준편차의 여러 조합에 대한 시뮬레이션을 통하여 저불일치 수열에 따르는 준난수 몬테칼로 방법들을 비교하였다. 결과적으로 준난수와 모로 역변환을 이용하는 것이 기본적인 몬테칼로 방법보다 정확하였으며 자산의 수와 관계없이 준난수 방법들 중 혼합법들이 더욱 효과적임을 알 수 있었다.

Keywords

References

  1. Antonov, I. A. and Saleev, V. M. (1979). An economic method of computing LP-sequences. USSR Journal of Computational Mathematics and Mathematical Physics, 19, 252-256.
  2. Beasley J. D. and Springer, S. G. (1977). Algorithm AS 111 : The percentage points of the normal distribution. Journal of the Royal Statistical Society C, 26, 118-121.
  3. Boyle, P., Evnine, J. and Gibbs, S. (1989). Numerical evaluation of multivariate contingent claims. Riview of Financial Studies, 2, 241-250. https://doi.org/10.1093/rfs/2.2.241
  4. Cox, J. and Ross, S. A. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3, 145-166. https://doi.org/10.1016/0304-405X(76)90023-4
  5. Faure, H. (1982). Discrepance de suites associees a un systeme de numerations (en dimensions). Acta Arith, 41, 337-351. https://doi.org/10.4064/aa-41-4-337-351
  6. Faure, H. and Tezuka, S. (2002). Another random scrambling of digital (t, s)-sequences. In Monte Carlo and Quasi-Monte Carlo Methods, Springer, Berlin, 242-256.
  7. Galanti, S. and Jung, A. (1997). Low-discrepancy sequences : Monte Carlo simulation of option prices. Journal of Derivatives, 5, 63-83. https://doi.org/10.3905/jod.1997.407985
  8. Halton, J. (1964). Algorithm 247: Radical-inverse quasi-random point sequence. ACM, 7, 701-702.
  9. Hong, H. S. and Hickernell, F. J. (2003). Algorithm 823 : Implementing scrambled digital sequences. ACM Transactions on Mathematical Software, 29, 95-109. https://doi.org/10.1145/779359.779360
  10. Joe, S. and Kuo, F. Y. (2003). Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software, 29, 49-57. https://doi.org/10.1145/641876.641879
  11. Johnson, H. (1981). The pricing of complex options, Unpublished manuscript.
  12. Johnson, H. (1987). Options on the maximum or the minimum of several assets. Journal of Financial and Quantitative Analysis, 22, 277-283. https://doi.org/10.2307/2330963
  13. Levy, G. (2004). Computational finance numerical methods for pricing financial instruments, Elsevier, Oxford.
  14. Margrabe, W. (1978). The value of an option to exchange one asset for another. Finance, 33, 177-186. https://doi.org/10.1111/j.1540-6261.1978.tb03397.x
  15. Moro, B. (1995). The full monte. Risk, 8, 57-58.
  16. Owen, A. B. (1995). Randomly permuted (t,m,s)-nets and (t,s)-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, edited by H. Niederreiter and P. J. S. Shiue, Springer-Verlag, New York, 299-317.
  17. Sobol, I. M. (1967). The distribution of points in a cube and the approximate evaluation of integrals. USSR Journal of Computational Mathematics and Mathematical Physics, 7, 86-112. https://doi.org/10.1016/0041-5553(67)90144-9
  18. Stulz, R. M. (1982). Options on the minimum or maximum of two risky assets : Analysis and applications. Journal of Financial Economics, 10, 161-185. https://doi.org/10.1016/0304-405X(82)90011-3
  19. Wu, X. and Zhang, J. E. (1999). Options on the minimum or the maximum of two average prices. Review of Derivatives Research, 3, 183-204. https://doi.org/10.1023/A:1009658511492

Cited by

  1. Performance comparison of random number generators based on Adaptive Rejection Sampling vol.26, pp.3, 2015, https://doi.org/10.7465/jkdi.2015.26.3.593