Image Evaluation Via $SUV_{LBM}$ for Normal Regions of VOI by Using Whole Body Images Obtained from PET/MRI and PET/CT

F-18 FDG PET/MRI와 PET/CT 전신 영상에서 VOI를 이용한 정상부위의 $SUV_{LBM}$-최대치에 의한 영상평가

  • Park, Jeong-Kyu (Department of Radiologic Technology, Daegu Health College) ;
  • Kim, Sung-Kyu (Department of Therapeutic Radiology & Oncology, Yeungnam University College of Medicine) ;
  • Cho, Ihn-Ho (Department of Nuclear Medicine, Yeungnam University College of Medicine) ;
  • Kong, Eun-Jung (Department of Nuclear Medicine, Yeungnam University College of Medicine) ;
  • Park, Meyong-Hwan (Department of Radiologic Technology, Daegu Health College)
  • 박정규 (대구보건대학교 방사선과) ;
  • 김성규 (영남대학교 방사선종양학교실) ;
  • 조인호 (영남대학교 핵의학교실) ;
  • 공은정 (영남대학교 핵의학교실) ;
  • 박명환 (대구보건대학교 방사선과)
  • Received : 2013.02.18
  • Accepted : 2013.03.05
  • Published : 2013.03.31

Abstract

The purpose of this research is to compare and analyze $SUV_{LBM}$-maximum of normal regions using VOI (the volume of interest) in order to enhance the diagnostic level in whole body images of PET/CT and PET/MRI for 26 health check-up participants. In particular, we try to set up $SUV_{LBM}$-maximum data that can be used in synchronous evaluation for PET/CT and PET/MRI without contrast media. The evaluation of $SUV_{LBM}$-maximum for normal regions of whole body PET/CT and whole body PET/MRI shows that the image of PET/MRI differs very significantly from the reference image of PET/CT (p<0.0001). However, they exhibit high correlations in view of statistics (R>0.8). From this research, we suggest that the decision in the evaluation of $SUV_{LBM}$-maximum for PET/MRI should be made with the reduction of about 26.3%, while one should decide with the reduction of about 29.3% when the contrast media is used. It is helpful to interpret all image of PET/CT and PET/MRI using $SUV_{LBM}$-maximum for convenience and efficiency.

본 연구의 목적은 26명의 건강한 검진자들을 대상으로 PET/CT와 PET/MRI의 전신 영상에서 조기 정밀/ 진단 수준을 향상하고자 관심부피를 이용하여 정상부위의 $SUV_{LBM}$-최대치를 이용하여 PET/CT와 PET/MRI를 조영제 사용 유무와 관계없이 동시 평가할 수 있는 데이터를 구축하고자 하였다. 전신 F-18 FDG PET/CT와 전신 F-18 FDG PET/MRI의 정상부위의 VOI를 이용한 $SUV_{LBM}$-최대치평가는 PET/CT를 기준으로 PET/MRI의 영상은 매우 유의한 차이를 보였다(p<0.0001). 그러나 통계학적으로 높은 상관관계를 가진다(R>0.8). PET/MRI의 $SUV_{LBM}$ 평가 시 26.3% 감소하여 판단할 것과 조영제를 사용할 경우는 29.3% 감소하여 판단할 것으로 생각한다. PET/CT와 PET/MRI의 모든 영상의 판독에서는 $SUV_{LBM}$-최대치를 사용하는 것이 편리성과 효율성을 고려하여 임상의나 연구자들에게 많은 도움이 되리라 판단된다.

Keywords

References

  1. Antoch G, Bockisch A: Combined PET/MRI: a new dimension inwhole-body oncology imaging? Eur J Nucl Med Mol Imaging 36:113-120 (2009) https://doi.org/10.1007/s00259-008-0951-6
  2. Antoch G, Vogt FM, Freudenberg LS, et al: Wholebody dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199-3206 (2003) https://doi.org/10.1001/jama.290.24.3199
  3. Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ: Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncology 12:181-191 (2011) https://doi.org/10.1016/S1470-2045(10)70103-0
  4. Kinahan PE, Hasegawa BH, Beyer T: X-ray-based attenuation correction for positron emission tomography/ computed tomography scanners. Semin Nucl Med 33:166-179 (2003) https://doi.org/10.1053/snuc.2003.127307
  5. Zaidi H: Is MRI-guided attenuation correction a viable option for dual modality PET/MRI imaging? Radiology 244:639-642 (2007) https://doi.org/10.1148/radiol.2443070092
  6. Martinez-Möller A, Souvatzoglou M, Delso G, et al: Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI : evaluation with PET/CT data. J Nucl Med 50:520-526 (2009) https://doi.org/10.2967/jnumed.108.054726
  7. Zincirkeser S, Sahin E, Halac M, Sager S: Standardized uptake values of normal organs on 18F-Fluorodeoxyglucose positron emission tomography and computed tomography imaging. J Int Med Res 35:231-236 (2007) https://doi.org/10.1177/147323000703500207
  8. Boellaard R: Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50:11-20 (2009) https://doi.org/10.2967/jnumed.108.057182
  9. Hong SL: A study for distortion of standardized uptake value according to the does and lesion size using 18F-FDG PET/CT. Graduates school Korea Univ, Seoul, Korea (2012)
  10. Menda Y, Bushnell DL, Madsen MT, McLaughlin K, Kahn D, Kernstine KH: Evaluation of various corrections to the standardized uptake value for diagnosis of pulmonary malignancy. Nucl Med Common 22:1077-1081 (2001) https://doi.org/10.1097/00006231-200110000-00004
  11. Zasadny KR, Wahl RL: Standardized uptake values of normal tissues at PET with2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 189:847-850 (1993)
  12. Wahl RL, Jacene H, Kasamon Y, Lodge MA: From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 50 Suppl 1:122S-150S (2009) https://doi.org/10.2967/jnumed.108.057307
  13. Matthias E, Axel MM, Michael S, et al: Value of a dixon- based MRI/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 38:1691-1701 (2011) https://doi.org/10.1007/s00259-011-1842-9
  14. Katrine Å: PET/CT: nuclear medicine imaging in the future. Radiation Protection Dosimetry 139:8-11 (2010) https://doi.org/10.1093/rpd/ncq083
  15. Hofmann M, Steinke F, Scheel V, et al: MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875- 1883 (2008) https://doi.org/10.2967/jnumed.107.049353
  16. Schulz V, Torres-Espallardo I, Renisch S, et al: Automatic, three-segment, MRI-based attenuation correction for whole-body PET/MRI data. Eur J Nucl Med Mol Imaging 38:138- 152 (2011) https://doi.org/10.1007/s00259-010-1603-1
  17. Boellaard R, O'Doherty MJ, Weber WA, et al: FDG PET and PET/CT: EANM procedure guide-lines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181-200 (2010) https://doi.org/10.1007/s00259-009-1297-4
  18. Lauenstein TC, Semelka RC: Emerging techniques: whole body screening and staging with MRI. J Magn Reson Imaging 24:489-498 (2006) https://doi.org/10.1002/jmri.20666
  19. Castelijns JA, van den Brekel MWM: Imaging of lymphadenopathy in the neck. Eur Radiology 12:727-738 (2002) https://doi.org/10.1007/s003300101102
  20. Kim WP: Statistical analysis lecture fundamentals. Statistics & Society 90:97-289 (2007)